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Abstract. We study the automorphism group of the field of surreal numbers. Our main structure theorem
presents a decomposition of this group into a product of five significant factors. Using the representation

of surreal numbers as generalized power series via their Conway normal form, we apply results on Hahn
fields and groups from the literature in order to obtain this decomposition. Moreover, we provide explicit

descriptions of the individual factors enabling us to construct automorphisms on the field of surreal numbers

from simpler components. We then extend our study to strongly linear automorphisms in connection to
derivations, as well as automorphisms that preserve further exponential structure on the surreals.

1. Introduction

The ordered field of surreal numbers No was first introduced and systematically studied in Conway’s
seminal work [9]. Initially constructed from basic order principles, the proper class No can be endowed with
a remarkably rich order-theoretic and algebraic structure and thus serves as a universal domain within the
examination of ordered algebraic structures. Prominently, No encompasses both the class On of ordinal
numbers as an ordered subclass and the field R of real numbers as an ordered subfield. See Gonshor [14] for
an extensive treatment of No.

While there are several equivalent representations of surreal numbers, e.g. by sign sequences of ordinal
length or by cuts between sets of surreals, in this work we consider surreal numbers as generalized power
series. This representation is possible due to the omega map x 7→ ωx on No, which assigns to each surreal
the unique simplest positive representative of some archimedean equivalence class. By means of the omega
map, any surreal a can be expressed uniquely in its Conway normal form

a =
∑
β<α

rβ · ωyβ ,

where α is an ordinal number, (yβ)β<α is a decreasing sequence in No and rβ are non-zero coefficients from R
(see [9, Theorem 21], [14, Theorem 5.6], [13, Theorem 14]). Via the Conway normal form, the field of surreal
numbers can be regarded as a field of generalized power series – a concept originally dating back to Hahn’s
influential work [15] on non-archimedean ordered systems. Even Gonshor himself points out that “for many
purposes we can simply work with these generalized power series and ignore what surreal numbers are in the
first place” [14, page 71]. The largest term r0 ·ωy0 in the Conway normal form of a 6= 0 determines both the
archimedean equivalence class and the sign of a: the element ωy0 is the simplest positive representative of
the archimedean equivalence class of a, and a has positive sign if and only if r0 is positive. From a valuation
theoretic point of view, this gives rise to No as the ordered Hahn field R((No)) with ordered residue field R
and ordered additive value group No (under the natural valuation).

In this work, we initiate a study of the automorphism group of the field No. From an algebraic perspective,
the motivation behind studying automorphism groups of fields is well-known, in particular in the context of
Galois Theory. Especially for a highly complex field such as the surreals, we hope that the systematic analysis
of automorphisms sheds further light on the (algebraic) structure and symmetries of No. The more recent
works [17] and [18] (based on the third author’s doctoral thesis [20]) prompted us to start our investigation.
In these works, the automorphism groups of Hahn fields and Hahn groups are systematically dissected. Based
on this structural analysis of automorphism groups, we derive our main result (Theorem 3.11) presenting
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a decomposition of the automorphism group of the field No into the product of the following five factors
(where semidirect products are particularly highlighted):1

Aut(No,+, ·) ' [1-Aut(No,+, ·) o Hom((No,+), (R,+))] o
[
Int(No,+) o

[
Aut(No, <)× RNo

]]
. (1.1)

We refer the reader to Section 2.3 for a concise introduction of the notation regarding automorphism groups
of Hahn fields and Hahn groups.

We establish decomposition (1.1) in two steps. First, regarding No as the Hahn field (R((No)) ,+, ·), a
decomposition into three factors is presented in Proposition 3.4 and simplified afterwards as follows:

Aut(No,+, ·) ' [1-Aut(No,+, ·) o Hom((No,+), (R,+))] o Aut(No,+, <)

Now the last factor Aut(No,+, <) consists of all automorphisms on No preserving its ordered additive group
structure. Consequently, we regard No as the ordered additive Hahn group (R((No)) ,+, <) for which we
obtain in Proposition 3.9 a decomposition into three factors as follows:

Aut(No,+, <) ' Int(No,+) o
[
Aut(No, <)× RNo

]
In all steps of the decomposition, we simplify some of the factors by pointing out isomorphic representations.
For instance by Remark 3.8, (Hom((No,+), (R,+)),+) is isomorphic to (RNo,+), meaning that (up to
isomorphism) the factor (RNo,+) appears twice in (1.1). However, this isomorphism depends on the choice
of a Q-basis of No and a bijection from this basis to No. Moreover, we scrutinize all factors further in order
to obtain explicit descriptions of automorphisms on No arising from these particular factors. Overall, we
point out how automorphisms on No are naturally generated as the composition of simpler automorphisms
based on No as a Hahn field and Hahn group.

In Section 4, we focus on the first factor of the decomposition, in particular, strongly linear automor-
phisms (automorphisms that commute with infinite sums). We discuss the connection between strongly
linear automorphisms and certain derivations, presented in [3]. We use this correspondence to construct
strongly linear automorphisms (Example 4.3). We also construct an automorphism that is not strongly lin-
ear (Example 4.4), and we use this to show that strongly linear automorphisms are not dense in the group of
all automorphisms with respect to the pointwise convergence topology (Remark 4.6). This partially answers
a question of Matusinski. In Section 5 we consider automorphisms that preserve further order and expo-
nential structure on the surreals. We show that automorphisms preserving the total ordering and simplicity
ordering are trivial (Proposition 5.1), that field automorphisms preserving the omega-map and valuation
are trivial (Proposition 5.5), and that strongly linear 1-automorphisms preserving the exponential map are
trivial (Proposition 5.2). We leave as questions a complete description of the automorphisms of these richer
structures.

2. Preliminaries

2.1. General conventions. We denote by N the set of natural numbers without 0. We work in NBG
set theory with global choice—a conservative extension of ZFC in which all proper classes are in bijective
correspondence with the class On of ordinals. By a class, we mean either a set or a proper class; algebraic
objects (groups, fields, etc.) may be classes. For more on working with class-sized models, see [12]. For the
reader who would prefer not to think about class-sized models, see Remark 2.2.

All orderings we consider are linear orderings. Let (A,<) and (B,<) be ordered classes. We use
standard interval notation such as A>a for {x ∈ A | a < x}. A map f : A → B is order preserving
if for any x, y ∈ A with x < y also f(x) < f(y). Given two additive abelian groups (C,+) and (D,+),
we denote by Hom((C,+), (D,+)) the group of homomorphism from C to D, where the group operation
on Hom((C,+), (D,+)) is given by pointwise addition. More generally, given a vector space V , we always
consider it as the group (V,+) with addition as the group operation. Given a field k, we let k× := k \ {0}
denote the group of invertible elements of k.

Throughout this work, let k = (k,+, ·, <) be an ordered field and let G = (G,+, <) be an
ordered abelian group.

1The group operation on automorphism groups is given by composition ◦ and on vector spaces by +.
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2.2. Hahn fields. The field of generalized power series (also called maximal Hahn field) with coeffi-
cient field k and value group G is denoted by k((G)). It consists of all power series of the form s =

∑
g∈G sgt

g,

where sg ∈ k for each g ∈ G and the support supp(s) = {g ∈ G | sg 6= 0} of s is a well-ordered set. We may
also take α to be the ordinal representing the order type of supp(s) and set s =

∑
β<α rβt

gβ , where (gβ)β<α
is a strictly increasing enumeration of supp(s) and rβ = sgβ ∈ k× for all β. For any s ∈ k((G)) and g ∈ G,
we denote by sg the coefficient of tg in the power series expansion. We consider k as a subfield of k((G))
by identifying each r ∈ k with rt0 ∈ k((G)). We endow k((G)) with the t-adic valuation v mapping any
non-zero s to min supp(s) ∈ G. The ordering on k((G)) is given by [s > 0 :⇔ sv(s) > 0]. See [17, Section 2]
for further details on Hahn fields.

Remark 2.1. Suppose that G is a proper class (the situation for much of this paper). As a consequence
of our requirement that the support of any s ∈ k((G)) is a set, the field k((G)) has more in common with
the κ-bounded Hahn fields [19] than with the maximal Hahn fields defined à la Hahn. For instance, k((G))
may not contain pseudolimits to proper class-length pseudocauchy sequences, and it may support a totally
defined exponential. Elsewhere in the literature, the maximal Hahn field is written k((G))On, to indicate the
boundedness condition on the supports, but we omit this subscript.

Remark 2.2. We note that our results apply just as well to the field No(κ), the set of surreal numbers of
length < κ, for any uncountable regular cardinal κ. This is a consequence of [10, Proposition 4.7], which
establishes that No(κ) = R((No(κ)))κ is a κ-bounded Hahn field that is canonically isomorphic to its own
value group.

The natural valuation on G is denoted by vG. It maps each element g ∈ G to its archimedean
equivalence class {h ∈ G | |g| < n|h| < n2|g| for some n ∈ N}. Its value set {vG(g) | g ∈ G \ {0}} is
ordered by [vG(g) < vG(h) :⇔ (|g| > |h| ∧ vG(g) 6= vG(h)]. If k is archimedean, then the natural valuation
on (k((G)) ,+, <) coincides with the t-adic valuation. In this case, v is the finest convex valuation on K.

2.3. Automorphisms. The automorphism group (where the group operation is given by composition of
functions) of an algebraic structure A is denoted by Aut(A). We always indicate the structure that is
preserved by the automorphisms explicitly. More precisely,

• Aut(k,+, ·, <) consists of all order preserving field automorphisms on k,
• Aut(k,+, ·) consists of all field automorphisms on k,
• Aut(G,+, <) consists of all order preserving group automorphisms on G,
• Aut(G,+) consists of all group automorphisms on G,
• Aut(G,<) consists of all order preserving bijections on G.

In the rest of this paragraph, we define some groups of automorphisms that will be relevant in the sequel.
We refer to [17, Section 3] and [20, Chapter 2] for details.

Definition 2.3. The group v-Aut(k((G)) ,+, ·) of all valuation preserving (field) automorphisms consists
of all automorphisms σ ∈ Aut(k((G)) ,+, ·) satisfying for any a, b ∈ k((G)),

v(a) < v(b)⇔ v(σ(a)) < v(σ(b)).

Given σ ∈ v-Aut(k((G)) ,+, ·), the induced automorphisms σk ∈ Aut(k,+, ·) and σG ∈ Aut(G,+, <) are
given by

σG : G→ G, g 7→ v(σ(tg)),

σk : k → k, a 7→ [σ(at0)]0.

Definition 2.4. The group Ext(k((G)) ,+, ·) of external (field) automorphisms consists of all automor-
phisms on (k((G)) ,+, ·) of the form ∑

g∈G
sgt

g 7→
∑
g∈G

ρ(sg)t
τ(g)

for some ρ ∈ Aut(k,+, ·) and τ ∈ Aut(G,+, <). The group Int(k((G)) ,+, ·) of internal (field) automor-
phisms consists of all σ ∈ v-Aut(k((G)) ,+, ·) inducing the identity maps, i.e. σk = idk and σG = idG. Its
subgroup 1-Aut(k((G)) ,+, ·) of 1-automorphisms consists of all σ ∈ Int(k((G)) ,+, ·) with [σ(a)]v(a) = av(a)
for any a ∈ k((G)).
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Remark 2.5. An automorphism σ ∈ v-Aut(k((G)) ,+, ·) is internal if and only if for any s ∈ k((G)) the follow-
ing holds: v(σ(s)) = v(s), and if v(s) = 0, then [σ(s)]0 = s0. Thus, an automorphism σ ∈ v-Aut(k((G)) ,+, ·)
is a 1-automorphism if and only if for any s ∈ k((G)) we have sv(s)t

v(s) = σ(s)v(σ(s))t
v(σ(s)). Alternatively, σ

is a 1-automorphism if and only if σ fixes the leading term of each s ∈ k((G)).

Next we turn to the ordered additive group reduct (k((G)) ,+, <) of (k((G)) ,+, ·, <). While the theory we
briefly introduce below applies to the context of more general Hahn groups, for our purposes it suffices to
focus on Hahn groups that are reducts of Hahn fields. We refer the reader to [20, Chapter 2] for the general
case.

Definition 2.6. The group of all valuation preserving (group) automorphisms v-Aut(k((G)) ,+) consists
of all automorphisms τ ∈ Aut(k((G)) ,+) satisfying for any g, h ∈ k((G)),

v(g) < v(h)⇔ v(τ(g)) < v(τ(h)).

Given τ ∈ v-Aut(k((G)) ,+), the induced automorphisms τG ∈ Aut(G,<) and τγ ∈ Aut(k,+) for each
γ ∈ G are given by

τG : G→ G, γ 7→ v(τ(tγ)),

τγ : k → k, a 7→ [τ(atγ)]τG(γ).

Definition 2.7. The group Ext(k((G)) ,+) of external (group) automorphisms consists of all automor-
phisms on (k((G)) ,+) of the form ∑

γ∈G
sγt

γ 7→
∑
γ∈G

ηγ(sγ)tζ(γ)

for some ζ ∈ Aut(G,<) and some ηγ ∈ Aut(k,+) for each γ ∈ G. The subgroup Ext(k((G)) ,+, <) of
Ext(k((G)) ,+) consists of all order preserving external (group) automorphisms. The group Int(k((G)) ,+) of
internal (group) automorphisms consists of all τ ∈ v-Aut(k((G)) ,+) with τG = idG and τγ = idk for
each γ ∈ G.

Remark 2.8. An automorphism τ ∈ v-Aut(k((G)) ,+) is internal if and only if for any s ∈ k((G)) we have
sv(s)t

v(s) = [τ(s)]v(τ(s))t
v(τ(s)). Thus, 1-Aut(k((G)) ,+, ·) 6 Int(k((G)) ,+), and indeed,

Int(k((G)) ,+) ∩ Int(k((G)) ,+, ·) = 1-Aut(k((G)) ,+, ·),

where the above groups are viewed as subgroups of the ambient group Aut(k((G)) ,+, ·). Of course, there are
many automorphisms in Int(k((G)) ,+) \ 1-Aut(k((G)) ,+, ·), such as multiplication by 1 + ε for any nonzero
ε ∈ k((G)) with v(ε) > 0. Note that any τ ∈ Int(k((G)) ,+) is order preserving, as [τ(s)]v(τ(s)) > 0 if and
only if sv(s) > 0.

2.4. Surreal numbers. The theory introduced in Section 2.3 applies to No by setting (k,+, ·, <) =
(R,+, ·, <) and (G,+, <) = (No,+, <). We do so by means of the Conway normal form representation
and by identifying ω−1 with the formal variable t in our generalized power series notation. In other words,
we identify (No,+, ·, <) with the ordered Hahn field (R((No)) ,+, ·, <) via the order preserving field isomor-
phism

No→ R((No)) ,
∑
β<α

rβ · ωyβ 7→
∑
β<α

rβt
−yβ .

Using this identification, we obtain

(No,+, ·, <) = (R((No)) ,+, ·, <) and (No,+, <) = (R((No)) ,+, <) .

Remark 2.9. We note here that (No,+, ·, <), (No,+, <), and (No, <) are all strongly homogeneous, mean-
ing that for any set-sized subfield (respectively subgroup, subset) K ⊆ No and any ordered field (ordered
group, ordered set) embedding σ : K → No, there is an ordered field (ordered group, ordered set) auto-
morphism of No extending σ. For more on homogeneity when working with proper class-sized models,
see [12].
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3. Decomposing the automorphism group

The first aim of this section is to apply the decomposition of v-Aut(k((G)) ,+, ·) into four factors as
presented in [17, Theorem 3.7.1] to the field No. To begin with, we show in Proposition 3.3 below that
v-Aut(No,+, ·) is already the full automorphism group Aut(No,+, ·) of No.

Lemma 3.1. Let F be a real closed field. Then any σ ∈ Aut(F,+, ·) is order preserving, i.e. σ preserves
the unique order < on F . Thus, Aut(F,+, ·) = Aut(F,+, ·, <).

Proof. Let a ∈ F with a > 0. Then there is some c ∈ F such that c2 = a. Thus, σ(a) = σ(c)2 > 0, showing
that σ is order preserving. �

Lemma 3.2. Any τ ∈ Aut(G,+, <) preserves vG, i.e. for any a, b ∈ G we have vG(a) < vG(b) if and only
if vG(τ(a)) < vG(τ(b)).

Proof. Let a, b ∈ G. Then

vG(a) < vG(b)⇔ ∀n ∈ N : |a| > n|b|
⇔ ∀n ∈ N : |τ(a)| > n|τ(b)|
⇔ vG(τ(a)) < vG(τ(b)). �

Proposition 3.3. Suppose that k((G)) is real closed. Then Aut(k((G)) ,+, ·) = v-Aut(k((G)) ,+, ·). In
particular,

Aut(No,+, ·) = v-Aut(No,+, ·).

Proof. Let σ ∈ Aut(k((G)) ,+, ·). Lemma 3.1 implies that σ ∈ Aut(k((G)) ,+, <). Thus by Lemma 3.2, σ is
valuation preserving. We obtain σ ∈ v-Aut(k((G)) ,+, ·). �

In order to apply [17, Theorem 3.7.1], it needs to be verified that No = R((No)) satisfies the first and
canonical second lifting property. We refer the reader to [17, Definitions 3.1.3 & 3.3.5] for the definitions of
lifting properties. Indeed, [17, Example 3.1.4 (i)] yields that R((No)) has the first lifting property, and by
[17, Example 3.3.9 (i)] it has the canonical second lifting property.

Proposition 3.4.

Aut(No,+, ·) ' [1-Aut(No,+, ·) o Hom((No,+), (R×, ·))] o Aut(No,+, <).

Proof. As No = R((No)) has the first and canonical second lifting property, we can apply [17, Theorem 3.7.1]
to obtain

v-Aut(No,+, ·) ' Int(No,+, ·) o Ext(No,+, ·)
' [1-Aut(No,+, ·) o Hom((No,+), (R×, ·))] o [Aut(R,+, ·)×Aut(No,+, <)].

It remains to apply Proposition 3.3 and to note that Aut(R,+, ·) is the trivial group, as any automorphism
on the field of real numbers is already the identity. �

The factor Hom((No,+), (R×, ·)) can be further simplified.

Lemma 3.5. Hom((No,+), (R×, ·)) ' Hom((No,+), (R,+)).

Proof. Let χ ∈ Hom((No,+), (R×, ·)). Then for any a ∈ No× we have χ(a) = χ(2 · a/2) = χ(a/2)2 ∈ R>0.
We obtain Hom((No,+), (R×, ·)) = Hom((No,+), (R>0, ·)). The lemma follows immediately from the fact
that the standard exponential map exp on R is an order preserving isomorphism from (R,+) to (R>0, ·). �

Corollary 3.6. Aut(No,+, ·) ' [1-Aut(No,+, ·) o Hom((No,+), (R,+))] o Aut(No,+, <).

Proposition 3.4 and Corollary 3.6 present the first step of the structural decomposition of Aut(No,+, ·)
into three (non-trivial) factors. Indeed, examples of 1-automorphisms are given in Example 4.3 below, we
give a full description of Hom((No,+), (R,+)) in Remark 3.8, and we further decompose Aut(No,+, <)
in Proposition 3.9. First, let us demonstrate exactly how to construct an element of Aut(No,+, ·) from
members of these three groups.
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Construction 3.7. Let σ ∈ 1-Aut(No,+, ·), ϕ ∈ Hom((No,+), (R,+)) and τ ∈ Aut(No,+, <). Then we
obtain an automorphism θ(σ, ϕ, τ) corresponding to the decomposition in Corollary 3.6 as follows:

θ(σ, ϕ, τ) :
∑
β<α

rβt
yβ 7→ σ

∑
β<α

exp(ϕ(τ(yβ)))rβt
τ(yβ)

= exp(ϕ(τ(y0)))r0t
τ(y0)(1 + ε),

for some ε ∈ No with v(ε) > 0.

Remark 3.8. Since homomorphisms from (No,+) to (R,+) are exactly the Q-linear maps from No to R,
we can fix a Q-basis B of No, and subsequently any homomorphism is uniquely determined by the images of
the elements of B in R. Moreover, the Q-vector space RB of all functions from B to R forms a group under
pointwise addition. Hence, (Hom((No,+), (R,+)),+) ' (RB,+) via the isomorphism

ϕ 7→ ϕ|B.

By fixing a bijection fB from B to No, we also obtain (RB,+) ' (RNo,+) via the isomorphism

h 7→ h ◦ f−1B .

We record the following alternative decompositions based on Corollary 3.6:

Aut(No,+, ·) ' [1-Aut(No,+, ·) oRB] o Aut(No,+, <) ' [1-Aut(No,+, ·) oRNo] o Aut(No,+, <)

We now turn to further decomposing the final factor Aut(No,+, <) in Corollary 3.6. To this end, we now
consider No as the ordered Hahn group (R((No)) ,+, <).

Proposition 3.9.

Aut(No,+, <) ' Int(No,+) o Ext(No,+, <)

' Int(No,+) o

Aut(No, <)×
∏
γ∈No

Aut(R,+, <)


' Int(No,+) o

[
Aut(No, <)× RNo

]
.

Proof. The Hahn group (R((No)) ,+) has the canonical lifting property (see [20, Examples 2.2.3 (i)] for
details). Thus,

v-Aut(No,+) ' Int(No,+) o Ext(No,+)

(see [20, Theorem 2.2.17] and [18, Theorem 3.15]). Moreover, the isomorphism Ξ: Int(No,+)oExt(No,+)→
v-Aut(No,+) is given by (τ1, τ2) 7→ τ1◦τ2. Now Int(No,+) 6 Aut(No,+, <) 6 v-Aut(No,+) by Remark 2.8
and [18, Remark 2.11], respectively. Hence,

Ξ−1(Aut(No,+, <)) = {(τ1, τ2) ∈ Int(No,+) o Ext(No,+) | τ1 ◦ τ2 is order preserving}
= {(τ1, τ2) ∈ Int(No,+) o Ext(No,+) | τ2 is order preserving}
= Int(No,+)oExt(No,+, <),

establishing the first isomorphism.
Next, the group of external automorphisms decomposes as

Ext(No,+) ' Aut(No, <)×
∏
γ∈No

Aut(R,+)

via the isomorphism

Θ: Aut(No, <)×
∏
γ∈No

Aut(R,+)→ Ext(No,+), (ζ, (ηγ)γ∈No) 7→

 ∑
γ∈No

sγt
γ 7→

∑
γ∈No

ηγ(sγ)tζ(γ)

.
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For the group of order preserving external automorphisms, we obtain

Θ−1(Ext(No,+, <))

=

 (ζ, (ηγ)γ∈No) ∈ Aut(No, <)×
∏
γ∈No

Aut(R,+)

∣∣∣∣∣∣ ∀γ ∈ No ∀r ∈ R : [ηγ(r) > 0⇔ r > 0]


= Aut(No, <)×

∏
γ∈No

Aut(R,+, <),

yielding the second isomorphism.
Finally, note that Aut(R,+, <) consists of all maps R→ R, x 7→ ax for some a ∈ R>0. Hence, Aut(R,+, <

) ' (R>0, ·). As (R>0, ·) is isomorphic to (R,+) via the real logarithm map log, we obtain∏
γ∈No

Aut(R,+, <) '
∏
γ∈No

(R,+) = (RNo,+),

as required. �

Recall that in Construction 3.7 we presented how θ(σ, ϕ, τ) ∈ Aut(No,+, ·) arises from some σ ∈
1-Aut(No,+, ·), ϕ ∈ Hom((No,+), (R,+)) and τ ∈ Aut(No,+, <). Based on the decomposition of Aut(No,+, <
) in Proposition 3.9, we refine τ in the following construction as τ(ν, ζ, g) for some internal group automor-
phism ν ∈ Int(No,+), some order preserving bijection ζ ∈ Aut(No, <) and some map g : No→ R.

Construction 3.10. Let ν ∈ Int(No,+), ζ ∈ Aut(No, <) and g ∈ RNo. We construct τ(ν, ζ, g) following
the decomposition presented in Proposition 3.9:

τ(ν, ζ, g) :
∑
β<α

rβt
yβ 7→ ν

∑
β<α

exp(g(yβ))rβt
ζ(yβ)

= exp(g(y0))r0t
ζ(y0)(1 + ε),

for some ε ∈ No with v(ε) > 0.

Finally, by combining Corollary 3.6 and Proposition 3.9, we obtain our main decomposition result.

Theorem 3.11.

Aut(No,+, ·) ' [1-Aut(No,+, ·) o Hom((No,+), (R,+))] o
[
Int(No,+) o

[
Aut(No, <)× RNo

]]
.

Given σ ∈ 1-Aut(No,+, ·), ϕ ∈ Hom((No,+), (R,+)), ν ∈ Int(No,+), ζ ∈ Aut(No, <) and g ∈ RNo,
one can combine Construction 3.7 and Construction 3.10 to obtain an automorphism θ(σ, ϕ, τ(ν, ζ, g)) ∈
Aut(No,+, ·) arising from the decomposition presented in Theorem 3.11.

Due to Remark 3.8, we also obtain the following decomposition, which depends on the choice of a Q-basis
B of No and a bijection from B to No.

Corollary 3.12.

Aut(No,+, ·) '
[
1-Aut(No,+, ·) oRNo

]
o
[
Int(No,+) o

[
Aut(No, <)× RNo

]]
.

Thus, the factor (RNo,+) appears twice in the decomposition. We point out that the first of those two
factors highly depends on a choice of a Q-basis B of No and a bijection fB : B → No, whereas the second
factor arises naturally without any particular choice.

4. Strongly additive automorphisms

An automorphism σ ∈ v-Aut(k((G)) ,+, ·) is said to be strongly additive if

σ
(∑
g∈G

sgt
g
)

=
∑
g∈G

σ(sgt
g)

for all s =
∑
g∈G sgt

g ∈ k((G)). Let v-Aut+(k((G)) ,+, ·) denote the group of strongly additive valuation
preserving automorphisms. Note that every external field automorphism is strongly additive.

A strongly k-linear automorphism of (k((G)) ,+, ·) is a strongly additive automorphism that is the
identity on k. We denote by v-Aut+k (k((G)) ,+, ·) the group of strongly k-linear valuation preserving auto-
morphisms.
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Remark 4.1. One source of strongly linear automorphisms comes from the hyperseries program of Bagayoko,
van der Hoeven, and others [1, 2, 4, 5, 6, 11]. Conjecturally, there is a composition law

(f, g) 7→ f ◦ g : No×No>R → No

satisfying some natural conditions, one of which is that for any g ∈ No>R, the map σg : No→ No given by
σg(f) := f ◦ g is a strongly R-linear automorphism (see [2, page 235] for a precise conjecture).

In order to study strongly linear automorphisms systematically, we first examine where they fit into
our decomposition. Let σ ∈ 1-Aut(No,+, ·), τ ∈ Aut(No,+, <), and ϕ ∈ Hom((No,+), (R,+)), and let
θ = θ(σ, ϕ, τ) be as in Construction 3.7. If σ is the identity, then θ is strongly R-linear. Thus, in studying
strongly additive and strongly R-linear automorphisms of No, it is enough to focus on 1-automorphisms.

In [3], a correspondence is established between strongly k-linear 1-automorphisms of k((G)) and certain
strongly k-linear derivations on k((G)). A strongly k-linear derivation is a strongly k-linear map

∂ : k((G))→ k((G))

that satisfies ∂(ab) = a∂(b) + b∂(a) for all a, b ∈ k((G)). A derivation ∂ is said to be contracting if
v(∂a) > v(a) for all a ∈ k((G)).

Fact 4.2 ([3, Theorem 3.17]). If ∂ a contracting strongly k-linear derivation, then the map exp(∂) : k((G))→
k((G)) given by

exp(∂)(a) :=

∞∑
i=0

∂i(a)/i!

is a strongly k-linear 1-automorphism of k((G)). The map ∂ 7→ exp(∂) is a bijection between the class of
contracting strongly k-linear derivations and the class of strongly k-linear 1-automorphisms.

In many cases, it is easier to work with contractive strongly linear derivations than 1-automorphisms,
as we will see in Proposition 5.2 below. It is also easy to find nontrivial contractive derivations, using the
following variant of a construction from [8, 16]:

Example 4.3. Let ϕ ∈ Hom((No,+), (R,+)) and consider the derivation ∂ϕ : No→ No given by∑
g∈No

rgt
g 7→

∑
g∈No

rgϕ(g)tg−1.

Then ∂ϕ is a contractive strongly R-linear derivation, so exp(∂ϕ) belongs to 1-Aut(No,+, ·).

We end this section by giving an example of a 1-automorphism of (No,+, ·) that is not strongly additive:

Example 4.4. Let K ⊆ No be the field of Puiseux series over R in ω−1, so K consists of all surreal numbers
of the form

∑
i∈Z riω

i/n where n ∈ N and where ri = 0 for all sufficiently large i. Then K is real closed with
value group Q.

Let a :=
∑
n∈N ω

−1/n. Then a is a pseudolimit of the pseudocauchy sequence (
∑m
n=1 ω

−1/n)m<ω in K, so

K(a) and its real closure K(a)rc are immediate extensions of K. Let ε := ω−ω ∈ No, so 0 < ε < K(a)>0.
Thus, a and a + ε realize the same cut over K, so there is a unique isomorphism σ1 : K(a)rc → K(a + ε)rc

that is the identity on K and sends a to a+ ε.
Using global choice, fix a well-ordered Q-vector space basis (yα)α∈On of No with y0 = 1 and y1 = ω. For

each α ∈ On, let Γα :=
⊕

β<αQyβ , and let Kα := R((Γα)), identified in the usual way with a subfield of No.
We define an automorphism σα on Kα for each α > 2 as follows:

(1) The field K2 = K((Q⊕Qω)) is an immediate extension of K(a, ωω)rc = K(a, ε)rc. Using that ωω

is greater than both K(a)rc and K(a + ε)rc, we extend σ1 to an automorphism of K(a, ωω)rc that
fixes ωω. We further extend this to an automorphism σ2 of K2 using the uniqueness of immediate
extensions.

(2) Let α > 2 and assume that we have defined σα. Then Kα+1 is an immediate extension of Kα(ωyα)rc.
We first extend σα to an automorphism of Kα(ωyα)rc that fixes ωyα , and then we further extend
this to Kα+1 by uniqueness of immediate extensions.
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(3) Let λ > 0 be a limit ordinal, and assume we’ve defined σα for α < λ. Then Kλ is an immediate
extension of

⋃
α<λKα, so the automorphisms (σα)α<λ extend to an automorphism σλ of Kλ, again

using uniqueness of immediate extensions.

We have No =
⋃
α∈OnKα, and we let σ : No → No be the common extension of the maps (σα)0<α∈On.

Then σ(ωy) = ωy for all y ∈ No and σ(r) = r for all r ∈ R, so σ is a 1-automorphism. Clearly, σ is not
strongly additive since

σ
(∑
n∈N

ω−1/n
)

=
∑
n∈N

ω−1/n + ω−ω 6=
∑
n∈N

σ(ω−1/n).

Strongly linear automorphisms have the desirable property that they can be easily expressed by declaring
them on monomials and extending by strong linearity. It is thus natural to ask whether non-strongly linear
automorphisms can be approximated by strongly linear ones. The following is a special case of a question
asked by M. Matusinski for the general case of Hahn fields.

Question 4.5. Can Aut(No,+, ·) be endowed with a reasonable topology, such that Aut+(No,+, ·) is a
dense subgroup?

The next remark rules out a natural topology.

Remark 4.6. Consider the pointwise convergence topology—the topology with basic open sets of the form

Uσ(y1, . . . , yn) := {τ ∈ Aut(No,+, ·) | τ(yi) = σ(yi) for i = 1, . . . , n}
where n ∈ N, σ ∈ Aut+(No,+, ·), and y1, . . . , yn ∈ No. This is the analogue of the topology used for the
Galois group of an infinite Galois extension.

Example 4.4 shows that Aut+(No,+, ·) is not dense in Aut(No,+, ·) with respect to this topology. To
see this, let σ and a =

∑
n∈N ω

−1/n be as in Example 4.4 and consider the open neighborhood

Uσ(a, ω) = {τ ∈ Aut(No,+, ·) : τ(a) = a+ ω−ω and τ(ω) = ω}.
For τ in this neighborhood, we have τ(ω−1/n) = τ(ω)−1/n = ω−1/n, so

τ
(∑
n∈N

ω−1/n
)
6=
∑
n∈N

ω−1/n =
∑
n∈N

τ(ω−1/n).

Thus, this neighborhood contains no strongly additive automorphisms.

5. Preserving exponentiation and the ω-map

In addition to its structure as a field of generalized power series, the field of surreal numbers enjoys a
plethora of additional structure:

(1) There is a well-founded partial ordering <s on No, and with this ordering, (No, <,<s) is a full
lexicographically ordered binary tree; see [13].

(2) There is an exponential exp on No that extends the real exponential [14]. With this exponential,
(No,+, ·, exp) is an elementary extension of the field of real numbers [10].

(3) There is the omega map x 7→ ωx, mentioned in the introduction. With this map, (No,+, ·, ωx) is a
so-called omega-field [7].

In this section, we briefly touch on the automorphism groups of these richer structures (though much
remains open in the last two cases).

Proposition 5.1. The subgroup Aut(No, <,<s) is trivial.

Proof. As a full lexicographically ordered binary tree, (No, <,<s) has the following properties: every x ∈ No
has exactly two immediate <s-successors (one < x and one > x), and every <s-chain (yα)α<λ in No with λ
a limit ordinal has a unique <s-supremum (when λ = 0 and this chain is empty, then 0 is this supremum).
Moreover, any surreal number is either an immediate <s-successor of another number, or a <s-supremum of
such a chain.

Let σ ∈ Aut(No, <,<s). If x ∈ No is fixed by σ, then its two immediate <s-successors must be as well.
If σ fixes an <s-chain (yα)α<λ with λ a limit, then it fixes the unique <s-supremum of this chain. As σ fixes
the empty chain, it fixes zero, and thus by induction it fixes all of No. �
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Now we turn to automorphisms of (No,+, ·, exp). As an ordered exponential field No is strongly ho-
mogeneous: for any set-sized elementary exponential subfield K ⊆ No and any elementary embedding
σ : K → No, there is an automorphism of (No,+, ·, exp) extending σ. In addition, any automorphism of No
arising from a composition as in Remark 4.1 is an automorphism of (No,+, ·, exp). While automorphisms
of (No,+, ·, exp) are plentiful, we have not been able to find an example of a nontrivial 1-automorphism of
(No,+, ·, exp). This is partially explained by the following negative result:

Proposition 5.2. The group 1-Aut+R (No,+, ·, exp) of strongly R-linear exponential field 1-automorphisms
is trivial.

Proof. Let ∂ : No→ No be a contractive strongly R-linear derivation and suppose that ∂ is not identically
zero. In light of Fact 4.2, it is enough to show that the automorphism σ :=

∑∞
i=0

1
i!∂

i does not commute
with the exponential map.

We claim that we can find y ∈ No with v(∂y) < 0. First, take a ∈ No with ∂a 6= 0 and take b ∈ No with
v(b) < min{0,−v(∂a)}. Then

∂(ab) = a∂b+ b∂a, ∂(ab2) = b(2a∂b+ b∂a).

Either v(a∂b + b∂a) or v(2a∂b + b∂a) is at most v(b∂a) < 0, so taking either y = ab or y = ab2, we get
v(∂y) < 0.

Let ε := σ(y)−y, so exp(σy) = exp(y+ε) = exp(y) exp(ε). Since ∂ is contractive, we have v(ε) = v(∂y) <
0, so v exp(ε) 6= 0. Therefore,

v exp(σy) = v exp(y) + v exp(ε) 6= v exp(y) = v(σ(exp y)),

where the last equality uses that σ is a 1-automorphism. Thus, σ doesn’t commute with the exponential. �

Automorphisms obtained from compositions as in Remark 4.1 are always strongly R-linear and commute
with the exponential. Thus we have:

Corollary 5.3. Automorphisms obtained from compositions are never 1-automorphisms.

Question 5.4. Are there any nontrivial 1-automorphisms of (No,+, ·, exp)?

Finally, we turn to automorphisms that commute with the ω-map.

Proposition 5.5. Any automorphism of (No,+, ·, ωx) that fixes the valuation is trivial. In particular, the
group 1-Aut(No,+, ·, ωx) is trivial.

Proof. Let σ be an automorphism preserving the omega map and let x ∈ No, so σ(ωx) = ωσ(x). Recall that
we identify ωx with t−x ∈ R((No)), so v(ωx) = −x. Thus, if v(σ(ωx)) = v(ωx), then σ(x) = x. �

Question 5.6. What are the nontrivial automorphisms of (No,+, ·, ωx)?

The search for these automorphisms seems related to the class of generalized ε-numbers (that is,
the fixed points of the map x 7→ ωx). As an ordered class, the generalized ε-numbers are in bijective
correspondence with (No, <); see [14, Theorem 9.1]. Note that any σ ∈ Aut(No,+, ·, ωx) induces an
automorphism of the ordered class of generalized ε-numbers: if ωx = x, then ωσ(x) = σ(ωx) = σ(x), so σ(x)
is a generalized ε-number as well.

Question 5.7. Does any order-isomorphism of the generalized ε-numbers extend to an automorphism of
(No,+, ·, ωx)?
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[15] H. Hahn, Über die nichtarchimedischen Größensysteme, Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften,
vol. 116, Wien. Ber., 1907, pp. 601–655.

[16] T. Hakobyan, An Ax-Kochen-Ershov theorem for monotone differential-Henselian fields, J. Symb. Log. 83 (2018), no. 2,

804–816.
[17] S. Kuhlmann and M. Serra, The automorphism group of a valued field of generalised formal power series, J. Algebra

605 (2022), 339–376.

[18] S. Kuhlmann and M. Serra, Automorphisms of valued Hahn groups, (2023), Preprint, https://arxiv.org/abs/2302.

06290.

[19] S. Kuhlmann and S. Shelah, κ-bounded exponential-logarithmic power series fields, Ann. Pure Appl. Logic 136 (2005),

no. 3, 284–296.
[20] M. Serra, Automorphism groups of Hahn groups and Hahn fields, Ph.D. thesis, Universität Konstanz, 2021.

Elliot Kaplan, Max-Planck-Institut für Mathematik, Bonn, Germany & Département de Mathématique,
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