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Abstract. In this paper we completely characterize all dimension functions on all models of the
theory Tlog of the asymptotic couple of the field of logarithmic transseries (Dimension Theorem).
This is done by characterizing the “small” 1-variable definable sets (Small Sets Theorem). As a
byproduct, we show that Tlog is d-minimal and does not eliminate imaginaries. Separately, we
provide an abstract criterion for d-minimality, which we use to observe some new examples of
d-minimal expansions of valued fields.

1. Introduction

The differential field Tlog of logarithmic transseries is conjectured to have nice model-theoretic
properties [25]. As Tlog is a so-called H-field [3], it is an expansion of a valued differential field; as
such, in the Ax–Kochen–Ershov (AKE) tradition we view Tlog in terms of the “decomposition”:

Tlog

R (Γlog, ψ)

Here, R is simultaneously the residue field of the valuation and the constant field of the derivation
(conjectured to have semialgebraic induced structure). The object Γlog is the value group of the
valuation, further equipped with a map ψ : Γlog → Γlog∪{∞} induced by the logarithmic derivative
of Tlog. Collectively, the pair (Γlog, ψ) is called the asymptotic couple of Tlog.

Incidentally, the object (Γlog, ψ) is also the asymptotic couple of the Hardy field R(L), i.e., the Hardy

field over R which is generated by all power-products of the form xr0(log x)r1(log◦2 x)r2 · · · (log◦n x)rn

for varying n, with each ri ∈ R. As pointed out in [18]: “many functions in number theory are
comparable, or are conjectured to be comparable” to a function in R(L). We contend that the as-
ymptotic couple (Γlog, ψ) is an appropriate universal domain for capturing the generic asymptotic
behavior of the functions in R(L), as well as their interaction with the (logarithmic) derivative.

This paper is the fourth in a series [23, 24, 26] about the theory Tlog (defined in Section 2) of the
asymptotic couple (Γlog, ψ). To summarize, here are the most relevant things already known:

• Tlog has quantifier elimination (QE) and a universal axiomatization (UA) in a natural
language [23]; in particular, the quantifier-free definable sets enjoy a Tarski–Seidenberg-
type theorem, and definable functions are given piecewise by terms in the language.
• Tlog has the non-independence property (NIP) [24]; in particular, this implies definable

hypothesis spaces are subject to the so-called Fundamental Theorem of Statistical Learning,
which tells us they are always PAC learnable (see the surveys [9, 33]). Moreover, Tlog is not
strongly dependent and so it is not dp-minimal nor does it have finite dp-rank [26].
• Tlog is distal [26]; in particular, definable relations satisfy strong combinatorial bounds

including a definable version of the strong Erdős–Hajnal property [11, 10].
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• The model-theoretic algebraic closure acl is in general not a pregeometry [24]; in particular,
there is no immediate off-the-shelf dimension theory we can use similar to the likes of vector
spaces, algebraically closed fields, and o-minimal structures.

In this paper, we further examine the nature of definable sets in models of Tlog from topological,
algebraic, and model-theoretic perspectives. Specifically, we answer the following questions:

Question. What are the dimension functions on models of Tlog?

Answer. The Dimension Theorem 1.1 completely characterizes all dimension functions on models
of Tlog, where dimension function is meant in the axiomatic sense of [16]; see Definition 3.1. Corol-
lary 3.16 shows that each such dimension coincides with an appropriate topological dimension.

Question. What is a more precise description of the 1-variable definable subsets of models of Tlog?

Answer. The Small Sets Theorem 3.11 characterizes the ideal of “small” unary definable sets (i.e.,
sets of dimension ≤ 0) for each dimension function, and forms the technical core of this paper.

Question. What is a more precise description of the n-variable definable subsets of models of Tlog?

Answer. This is the Kinda Small Sets Theorem 3.15 and the Very Small Sets Theorem 3.22. When
n > 1, the conditions in the Small Sets Theorem 3.11 generalize in two ways: they either characterize
sets of dimension < n (“kinda small sets”) or sets of dimension ≤ 0 (“very small sets”).

Question. What is a more precise description of definable functions in models of Tlog?

Answer. Corollary 3.17 asserts that every definable function f : Γn → Γ∞ is either locally affine or
locally constant outside of a “kinda small set”. Conversely, Proposition 4.17 characterizes functions
defined on the “typical very small set” Ψn. Understanding these two extremes is sufficient for many
questions about definable functions due to the inductive nature of dimension.

Question. Is the theory Tlog d-minimal?

Answer. Yes, i.e., every 1-variable definable set in any model either has nonempty interior or is a
finite union of discrete sets (Definition 5.2). First, this is apparent from (2)⇔(3) of the Small Sets
Theorem 3.11. A second proof follows readily from a general d-minimality criterion, Proposition 5.5.
Finally, Corollary 3.25 shows that Tlog is d-minimal in the stronger sense of [20, Definition 9.1],
which places additional topological requirements on the definable sets in n-variables; this relies on
the Kinda Small and Very Small Sets Theorems 3.15 and 3.22.

Question. Does the 1-sorted theory Tlog have elimination of imaginaries (EI)?

Answer. No. The analogue of the RV sort cannot be eliminated (Lemma 3.29). This uses properties
of dimension and a cardinality argument in what we call the standard model.

Overview and main ideas. Throughout, m and n range over N = {0, 1, 2, . . .}. Let
⊕

nRen be
a vector space over R with basis (en). Then

⊕
nRen can be made into an ordered group using the

usual lexicographical order, i.e., by requiring for nonzero
∑

i riei, that∑
riei > 0 ⇐⇒ rn > 0 for the least n such that rn 6= 0.

Let Γlog be the above ordered abelian group
⊕

nRen. It is convenient to think of an element
∑
riei

as the vector (r0, r1, r2, . . .). We follow Rosenlicht [36] in taking the function:

ψ : Γlog \ {0} → Γlog, (0, . . . , 0︸ ︷︷ ︸
n

, rn︸︷︷︸
6=0

, rn+1, . . .) 7→ (1, . . . , 1︸ ︷︷ ︸
n+1

, 0, 0, . . .)

as a new primitive, calling the pair (Γlog, ψ) an asymptotic couple. Throughout, we refer to this
specific asymptotic couple, depicted in Figure 1, as the standard model.
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Ψ

Figure 1: The standard model of Tlog.

The first key observation about the function ψ is that it is a convex valuation on the ordered abelian
group Γlog. Moreover, the value set Ψ of ψ is a very important definable subset of Γlog:

Ψ := ψ(Γlog \ {0}) = {(1, . . . , 1︸ ︷︷ ︸
n

, 0, 0, . . .) : n ≥ 1}.

Note that this situation is a bit atypical in valuation theory, as usually a value set (or value group) of
a valuation lives on its own more primitive sort, and is not a subset of the domain of the valuation.
Furthermore, Ψ introduces a discrete set into the otherwise “continuous” object Γlog, which itself
is o-minimal as an ordered divisible abelian group. In general, these seem to be the main sources
of complications when dealing with (Γlog, ψ).

The story of dimension now begins with the following observation:

Although acl is not a pregeometry in general, the relativization of acl to the de-
finable set Ψ is a pregeometry. Moreover, this relativization X 7→ acl(X ∪ Ψ) is
essentially the same as the “linear” pregeometry X 7→ spanQ(X ∪ Ψ) coming from
the underlying divisible abelian group structure of Γlog.

This pregeometry gives rise to a dimension function. However, the following issue still remains:

How many dimension functions does a model of Tlog have? Since there is no obvious
definable field structure, uniqueness results such as [20, Theorem 3.48] do not apply.

The general role of coarsening in the analysis of H-fields [3] provides a natural guess at what the
other dimension functions might be: they are parametrized by a certain “scale” that is uniformly
indexed by the Ψ-set of the asymptotic couple, which we now explain.

For an arbitrary model (Γ, ψ) of Tlog we set Ψ := ψ(Γ6=), where Γ 6= := Γ \ {0}. Then for φ ∈ Ψ we
define a proper convex subgroup of Γ:

∆φ := {x ∈ Γ6= : ψ(x) > φ} ∪ {0}.
We extend this to φ ∈ Ψ ∪ {∞} by setting ∆∞ := {0}. We may then proceed to study a definable
set X ⊆ Γ in terms of its image in the quotient Γ/∆φ, which we visualize in Figure 2.

φ

Γ
( )

∆φ

φ+ ∆φ

Γ/∆φ

⇐
=

Figure 2: Quotienting by ∆φ.
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To do this, we consider the further relativization X 7→ acl(X∪Ψ∪∆φ), which is also a pregeometry
and yields a notion of dimension dimφ on definable sets. However, it is not obvious that dimφ is
a dimension function in the axiomatic sense of [16] (indeed, not every pregeometric dimension is:
the theory of (N;<) is pregeometric, but the corresponding dimension is not definable). Our main
theorem establishes that the dimφ are dimension functions, and they are the only ones:

Dimension Theorem 1.1. Suppose (Γ, ψ) is a model of Tlog. Then:

(1) for each φ ∈ Ψ ∪ {∞}, there exists a unique dimension function dimφ on (Γ, ψ) such that

dimφ ∆φ = 0 and dimφ ∆ξ = 1 for all ξ ∈ Ψ<φ, and
(2) if d is an arbitrary dimension function on (Γ, ψ), then d = dimφ for some φ ∈ Ψ ∪ {∞}.

This theorem follows from the Small Sets Theorem 3.11, which characterizes the definable sets
X ⊆ Γ such that dimφX ≤ 0. Part of this characterization includes the fact that Tlog is d-minimal.

At an earlier stage of this work, we also produced a direct proof that Tlog is d-minimal by extract-
ing and applying a d-minimality criterion, Proposition 5.5, from other proofs of d-minimality. This
proof was later superseded by the finer analysis needed for the Small Sets Theorem 3.11. Never-
theless, we have included this criterion because it may be useful for other topological theories. For
example, we use it to show in Subsection 5.3 that henselian valued fields of equicharacteristic zero,
equipped with a section of the valuation and a lift of the residue field, are d-minimal. See Section 5
for a self-contained treatment of this criterion and other applications.

1.1. Outline of paper. In Section 2 we review the theory Tlog and establish some basic facts
we need. Section 3 contains the main results of the paper; see the introduction of that section
for an overview. Section 4 is dedicated to the proof of the Small Sets Theorem; in particular,
Subsection 4.1 provides a roadmap of the proof and the rest of the section consists of independent
subsections contributing some part of the proof. Section 5 provides an abstract criterion for d-
minimality for topological theories expanded by unary functions, along with several applications.
In Section 6 we make some final comments and observations. Finally, in Appendix A we collect a
few basic topological facts and definitions that we use and prove some facts needed for Section 5.

1.2. Conventions.

Set theory conventions. Given a boolean algebra C of subsets of a set X, recall that an ideal of C
is a collection I ⊆ C such that ∅ ∈ I, if A,B ∈ I, then A ∪B ∈ I, and if A ⊆ B and B ∈ I, then
A ∈ I. Given a set X ⊆ A×B and a ∈ A, Xa := {b ∈ B : (a, b) ∈ X} denotes the fiber of X over
a. We may use t and

⊔
instead of ∪ and

⋃
to emphasize that a given union is a disjoint union.

Ordered set conventions. By “ordered set” we mean “totally ordered set”. Let S be an ordered
set. Below, the ordering on S will be denoted by ≤, and a subset of S is viewed as ordered by the
induced ordering. Suppose that B is a subset of S. We put S>B := {s ∈ S : s > b for every b ∈ B}
and S>a := S>{a}; similarly for ≥, <, and ≤ instead of >. For a, b ∈ S we put

[a, b]B := {x ∈ B : a ≤ x ≤ b}.

If B = S, then we usually write [a, b] instead of [a, b]S . A subset C of B is said to be convex in B
if for all a, b ∈ C we have [a, b]B ⊆ C. For a < b we also set

(a, b) := {x ∈ X : a < x < b}.

The sets of the form (a, b) are called intervals in S. The intervals form a basis for a hausdorff
topology on S, the order topology on S.
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Ordered abelian group conventions. Suppose that G is an ordered abelian group. Then we set
G 6= := G\{0}. Also G< := G<0; similarly for ≥, ≤, and > instead of <. We define |g| := max(g,−g)
for g ∈ G. For a ∈ G, the archimedean class of a is defined by

[a] := {g ∈ G : |a| ≤ n|g| and |g| ≤ n|a| for some n ≥ 1}.
Basic facts about ordered abelian groups and archimedean classes may be found in [3, 2.4].

Topology conventions. Given a subset A of a topological space X, we let A′ denote the derived
set of A (in X), i.e., the set of limit points of A in X. For n > 0, we set A(n) := (A(n−1))′, where

A(0) := A. We say that A is d-finite (in X) if A(n) = ∅ for some n. Given a function f : X → Y
between topological spaces X,Y , we let Discont(f) denote the set of points of X at which f is
discontinuous. We let brA := A \ intA denote the border of A. See Appendix A for more on
d-finite sets, the border of A, and other topological facts we use.

Model theory conventions. In general we adopt the conventions of [3, Appendix B]. In Sections 2, 3
and 4 we work in a 1-sorted setting, whereas in Section 5 we work in a possibly many-sorted setting.

Throughout, A-definable has its usual meaning, whereas definable means definable with arbitrary
parameters (as opposed to meaning ∅-definable). In general we choose not to consider a monster
model (except in Lemma 3.10) and instead opt to work in arbitrary models of a (complete) theory,
taking (sufficiently saturated) elementary extensions as needed.

Given an elementary extension M 4M∗, and a definable set X in M , it is understood that X∗

denotes its realization in M∗; moreover, given a tuple α in M∗, we regard tp(α|M) as an ultrafilter
on a boolean algebra of M -definable subsets, as opposed to a collection of formulas.

As is standard when working with pregeometries, we often use concatenation to denote a union of
sets, e.g., AΨ∆φ := A ∪Ψ ∪∆φ. We refer to [39, C.1] for the basic properties of pregeometries.

2. Overview of Tlog

In this section we provide an overview of the theory Tlog and establish a few basic facts and
conventions needed for the remainder of the paper. Since every asymptotic couple we will encounter
will be a model of Tlog, we forgo a systematic development and instead define Tlog directly from
the standard model introduced in Section 1. See [3, Sections 6.5, 9.2] for a general treatment of
asymptotic couples (including the definition), and [23] for an axiomatic treatment of Tlog.

2.1. More functions on the standard model. First, since the ordered abelian group Γlog is
divisible, for n ≥ 1 we may define:

δn : Γlog → Γlog, α 7→ δn(α) := 1
nα.

Next, observe that (Γlog, ψ) has asymptotic integration, i.e., for every α ∈ Γlog there exists a unique

β ∈ Γ 6=log such that β + ψ(β) = α. Thus, we may define the asymptotic integral :∫
: Γlog → Γ6=log, α 7→

∫
α := the unique β such that β + ψ(β) = α.

Note that
∫

is an increasing bijection. Next we define the successor function:

s : Γlog → Ψ, α 7→ s(α) := ψ(
∫
α).

Note that s0 is the smallest element of Ψ. For each φ ∈ Ψ, the element sφ is the immediate
successor of φ in the ordered set (Ψ;<), so s restricts to an increasing bijection s : Ψ → Ψ>s0.
Thus, we may define the predecessor function:

p : Ψ>s0 → Ψ, φ 7→ p(φ) := the unique ξ ∈ Ψ such that sξ = φ.
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Finally, we adjoin to the underlying set Γlog a new element ∞ and extend the ordering on Γlog

to Γlog ∪ {∞} by declaring Γlog < ∞. Likewise, we extend the domains of the functions defined
so far for Γlog by declaring ∞ to be a default value, i.e., for every n ≥ 1, α ∈ Γlog ∪ {∞}, and
β ∈ (Γlog ∪ {∞}) \Ψ>s0 we define:

−∞ = α+∞ = ∞+ α = ψ(0) = ψ(∞) = δn(∞) =
∫
∞ = s(∞) = p(β) := ∞.

2.2. The Llog-theory Tlog. We construe the standard model (Γlog, ψ) as an Llog-structure, where

Llog := {0,−,+, <, ψ,∞, (δn)n≥1, s, p}
and define Tlog := ThLlog

(Γlog, ψ). By convention, we will always denote a model of Tlog by a pair
(Γ, ψ), where it is understood that:

• Γ = (Γ; 0,−,+, <, (δn)n≥1) is an ordered divisible abelian group, which we also regard as
an ordered Q-vector space;
• ψ is a function Γ6= → Γ;
• the primitives s, p are left implicit as they can be defined in terms of ψ;
• the underlying set of the Llog-structure is Γ∞ := Γ ∪ {∞}, where Γ <∞ and all primitives

may be regarded as total functions;
• although not part of the language, we can make use of the definable function

∫
: Γ → Γ6=,

defined in the same way as for (Γlog, ψ).

Remark 2.1 (Disclaimer about ∞). As ∞ is an element of our underlying structure, we treat it
as such in model-theoretic statements. However, most of our statements are made only considering
Γn (without∞). In this way we can use Q-vector space arguments without having to accommodate
∞. Such statements can be readily adapted to Γn∞.

For the rest of Section 2, we assume (Γ, ψ) is a model of Tlog.

We need the following identities, established in [23, Lemmas 3.2, 3.7, and 3.4]. The first connects
s and

∫
and implies we may regard

∫
as an Llog-term:

Fact 2.2. For all α, β ∈ Γ:

Integral Identity.
∫
α = α− sα.

Fixed Point Identity. β = ψ(α− β) if and only if β = sα.
Successor Identity. If sα < sβ, then ψ(β − α) = sα.

Fact 2.3 (QE [23, Theorem 5.2] and UA [23, Lemma 5.1]). Tlog has quantifier elimination (QE)
and a universal axiomatization (UA).

Here is an immediate consequence of QE and UA:

Lemma 2.4. Suppose (Γ1, ψ1) |= Tlog and (Γ0, ψ0) ⊆ (Γ1, ψ1) is an Llog-substructure. Then

(Γ0, ψ0) 4 (Γ1, ψ1), and thus ψ0(Γ 6=0 ) = Γ0 ∩ ψ1(Γ 6=1 ).

Given a tuple α in an extension (Γ1, ψ1) < (Γ, ψ), we let Γ〈α〉 denote the Llog-substructure of Γ1

generated by Γ and α. Then (Γ, ψ) 4 (Γ〈α〉, ψ1|Γ〈α〉) 4 (Γ1, ψ1) by the previous lemma.

2.3. The Ψ-set of a model. Given a model (Γ0, ψ0) of Tlog, we set ΨΓ0
:= ψ(Γ 6=0 ), which we refer

to as the Ψ-set of (Γ0, ψ0). Thus by Lemma 2.4:

ΨΓ0 = Γ0 ∩ΨΓ1 for any model (Γ1, ψ1) of Tlog extending (Γ0, ψ0).

When a distinguished model (Γ, ψ) is clear from context (as is currently the case), we will denote
ΨΓ as just Ψ. Finally, we set Ψ∞ := Ψ ∪ {∞}.
Lemma 2.5. Let Γ1 be a Q-linear subspace of Γ with Ψ ⊆ Γ1. Then (Γ1, ψ|Γ1) is an elementary
substructure of (Γ, ψ) with ΨΓ1 = Ψ.
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Proof. From Ψ ⊆ Γ1, we get that Γ1,∞ is closed under the functions ψ, s, and p. Hence (Γ1, ψ|Γ1)
is an Llog-substructure of (Γ, ψ). The claim now follows by Lemma 2.4. �

Observe that (Ψ;<) ≡ (N;<). In fact, this entirely characterizes the structure of the Ψ-set:

Fact 2.6 ([23, Corollary 7.2]). If (Γ, ψ) |= Tlog, the structure (Ψ;<) is purely stably embedded in
(Γ, ψ) in the sense that the structure induced on Ψ by (Γ, ψ) is just its structure as an ordered set.

Lemma 2.7. If C ⊆ Ψ is a definable convex subset of Ψ, then C is either of the form [α, β]Ψ or
Ψ≥α for some α, β ∈ Ψ.

Proof. This follows from Fact 2.6, and can also be seen directly by noting that “proper s-cuts”
(see [24, 2.7]) are not definable since this would violate the universal property of the extension
lemma [23, 4.12]. �

Lemma 2.8 (Locally constant primitives). When Γ is equipped with the order topology we have:

(1) p takes constant value ∞ on Γ \Ψ>s0,
(2) ψ is locally constant on Γ6=,
(3) s is locally constant on Γ.

Proof. (1) Clear from the definition. (2) Suppose x 6= 0, say x > 0. Then ψ(x/2) = ψ(2x), and so
ψ takes constant value ψ(x) on the interval (x/2, 2x) since ψ is a convex valuation. (3) Note that∫

: Γ → Γ 6= is a homeomorphism since it is a strictly increasing bijection. Thus, the composition
s = ψ ◦

∫
is locally constant by (2). �

2.4. Quotienting by ∆φ. In this subsection we let φ range over Ψ∞. Recall:

Definition 2.9. For φ ∈ Ψ define the proper convex subgroup of Γ:

∆φ := {x ∈ Γ : ψ(x) > φ}.

We extend this to φ ∈ Ψ∞ by setting ∆∞ := {0}.

Lemma 2.10. The set of definable convex subgroups of Γ is {∆φ : φ ∈ Ψ∞} ∪ {Γ}.

Proof. Suppose ∆ ⊆ Γ is a definable convex subgroup and consider X := {φ ∈ Ψ : ∆φ ⊇ ∆}, a
definable initial segment of Ψ; by Lemma 2.7 there are three cases to consider. If X = Ψ, then
∆ = {0} = ∆∞. If X 6= Ψ is nonempty, then for φ := maxX, we have ∆φ ⊇ ∆ ) ∆sφ. We
claim ∆φ = ∆. Otherwise, since ∆ is definable, this would contradict the universal property in the
extension lemma [23, 4.6] since there would be two nonisomorphic ways of adding an element at
the cut “∆+”: one that adds a new archimedean class to the extension of the definable set ∆, and
one that does not. Finally, if X = ∅, then we have ∆ = Γ by a similar argument. �

Finally, we establish the following notation and conventions with regard to quotienting by ∆φ:

• Given the subgroup ∆φ ⊆ Γ, let πφ : Γ → Γ/∆φ denote the projection map. When φ is
understood from context, we denote Γ̄ := Γ/∆φ. Since ∆φ is a convex Q-subspace, we may
construe Γ̄ as an ordered Q-vector space, with ordering induced by the ordering on Γ.
• Given the subgroup ∆n

φ ⊆ Γn, we identify Γn/∆n
φ with (Γ/∆φ)n, which we also denote by

Γ̄n when φ is understood from context. We also have the natural projection map

πφ : Γn → Γ̄n, (α1, . . . , αn) 7→ (α1 + ∆φ, . . . , αn + ∆φ) = (α1, . . . , αn) + ∆n
φ.

• Given α ∈ Γn and X ⊆ Γn, we denote πφ(α) and πφ(X) by just ᾱ and X̄ when φ is
understood from context.
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3. Dimension, the Small Sets Theorem, and related results

This section contains the main results of this paper. First, Subsection 3.1 reviews the definition
and main properties of a dimension function on a structure, and makes some basic observations
about how dimension functions on models of Tlog must behave. Next, Subsection 3.2 introduces
the family of pregeometries on models of Tlog that will later give rise to the family of dimension
functions. Subsection 3.3 contains the statement of the Small Sets Theorem 3.11 (proof deferred
to Section 4). Subsection 3.4 shows how the Dimension Theorem 1.1 follows from (part of) the
Small Sets Theorem. In Subsection 3.5 we see how the Small Sets Theorem splits into the Kinda
Small Sets Theorem 3.15 and Very Small Sets Theorem 3.22 when considering definable sets of
higher arity. We also observe some consequences, including local linearity (Corollary 3.17) and d-
minimality (Corollary 3.25). Finally, Subsection 3.6 shows the failure of elimination of imaginaries,
as a consequence of dimension theory.

In this section (Γ, ψ) ranges over models of Tlog, and φ ranges over Ψ∞, where Ψ = ψ(Γ6=). We
equip Γ̄ = Γ/∆φ with the order topology and Γ̄n = (Γ/∆φ)n = Γn/∆n

φ with the product topology.

Given a set X ⊆ Γn, we construe X̄ = πφ(X) as a subset of the ambient topological space Γ̄n.

3.1. Dimension functions. We adopt the following definition of a dimension function from [16];
below we declare −∞ < N and set n+ (−∞) := −∞ for every n ∈ N.

Definition 3.1. Let M be a 1-sorted structure. A dimension function on M is a function d
from the definable subsets of Mn (n varying) to N ∪ {−∞} such that:

(D1) (a) d(S) = −∞⇔ S = ∅ for definable S ⊆Mn;
(b) d({a}) = 0 for all a ∈M ;
(c) d(M) = 1;

(D2) d(S1 ∪ S2) = max{d(S1),d(S2)} for definable S1, S2 ⊆Mn;
(D3) d is preserved under permutation of coordinates;
(D4) if S ⊆Mn+1 is definable, then Bi := {a ∈Mn : d(Sa) = i} is definable and

d
(
{(a, b) ∈ S : a ∈ Bi}

)
= i+ d(Bi) for i = 0, 1.

These four axioms have several natural consequences. Here we collect a few that we need.

Fact 3.2 ([16, 1.1, 1.3, 1.5], [1, 2.2]). Let M be a structure and d be a dimension function on M .

(1) If S1, S2 ⊆Mn are definable and S1 ⊆ S2, then dS1 ≤ dS2.
(2) If S ⊆Mn is finite and nonempty, then dS = 0.
(3) dMn = n.
(4) If d′ is a dimension function on M such that d′ S = dS for all definable S ⊆ M , then

d′ = d.
(5) If S ⊆Mm and f : S →Mn are definable, then:

(a) d(S × T ) = dS + dT for any definable T ⊆Mn;
(b) dS ≥ d f(S) (in particular, dS = d f(S) for injective f);
(c) Bi := {a ∈Mn : d f−1(a) = i} is definable and d f−1(Bi) = i+ dBi for i = 0, . . . ,m.

(6) For S ⊆ Mn definable and d ≤ n, we have dS ≥ d if and only if dπ(S) = d for some
coordinate projection π : Mn →Md.

Lemma 3.3. Let d be a dimension function on an expansion of a linear order (M ;<, . . .) and
X ⊆M be a definable subset such that for every a ∈ X, we have dX≤a = 0. Then dX = 0.

Proof. Clearly, dX ∈ {0, 1}, so dX2 ∈ {0, 2} by Fact 3.2(5a). However, by (D4) the “triangle”
{(a, b) ∈ X2 : b ≤ a} has dimension dX since the vertical fibers Xa = X≤a have dimension 0.
Since the square X2 can be covered by two definably bijective copies of this triangle, it follows from
Fact 3.2(5b) and (D2) that dX2 ∈ {0, 1}, hence dX2 = 0. Thus dX = 0. �
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Corollary 3.4. Let d be a dimension function on (Γ, ψ). Then d Ψ = 0.

Proof. Consider X := {α ∈ Ψ : d[s0, α]Ψ = 0}, which is a definable initial segment of Ψ by (D4)
and Fact 3.2(1). By Lemma 3.3, it suffices to show that X = Ψ. By (D1) and (D2), s0 ∈ X and if
α ∈ X, then sα ∈ X. Hence X = Ψ by Lemma 2.7, as desired. �

In an ordered abelian group, there is always a largest definable convex subgroup with dimension 0:

Lemma 3.5. Let d be a dimension function on an expansion (G;<,+, . . .) of an ordered abelian
group. Then G has a largest definable convex subgroup ∆ such that d ∆ = 0. For an interval
(a, b) ⊆ G, we have d(a, b) = 1 if and only if b− a > ∆.

Proof. Define ∆ := {x ∈ G : d[−|x|, |x|] = 0}. The set ∆ is convex by Fact 3.2(1) and definable by
(D4). It follows by Fact 3.2(5b) and (D2) that if x ∈ ∆, then 2x ∈ ∆, so ∆ is a subgroup. Applying
Lemma 3.3 to ∆≥ yields d ∆ = 0. The final statement follows by similar calculations. �

The following consequence of Lemmas 2.10 and 3.5 limits the possible dimension functions:

Corollary 3.6. If d is a dimension function on (Γ, ψ), then there exists a unique φ such that
d ∆φ = 0 and d ∆ξ = 1 for every ξ ∈ Ψ<φ; moreover, for an interval (a, b) ⊆ Γ, we have d(a, b) = 0
if and only if b− a ∈ ∆φ.

Corollary 3.6 notwithstanding, the following two things are still not clear at this point:

• (Uniqueness) For each φ, there is at most one dimension function d such that d ∆φ = 0 and

d ∆ξ = 1 for ξ ∈ Ψ<φ.
• (Existence) For each φ, there is at least one such dimension function.

Remark 3.7. If R = (R;<,+, . . .) is an o-minimal expansion of an ordered group, then Lemma 3.5
already provides the uniqueness of a dimension function as an easy consequence of the o-minimality
axiom (it implies all intervals must have dimension 1), although existence of a dimension function
requires more work (via the Cell Decomposition Theorem, or by proving acl is a pregeometry as a
consequence of the Monotonicity Theorem).

3.2. Pregeometries. For each φ define a closure operator clφ on Γ∞ by setting for each A ⊆ Γ∞:

clφ(A) := acl(AΨ∆φ).

Although the model-theoretic algebraic closure acl in Tlog is not a pregeometry, it follows from QE
and UA that clφ(A)\{∞} = spanQ(AΨ∆φ) = spanQ(AΨ) + ∆φ for A ⊆ Γ, so clφ is a pregeometry;
in particular, clφ(A) = cl∞(A) + ∆φ. Moreover, (clφ(A), ψ|clφ(A)) is an elementary substructure of

(Γ, ψ) with Ψclφ(A) = Ψ by Lemma 2.5.

Each pregeometry yields a notion of dimension defined as follows. Let rkφ(B|A) be the size of a
basis of clφ(AB) over clφ(A). Then for a definable X ⊆ Γn∞, set

dimφ(X) := sup{rkφ({x0, . . . , xn−1}|Γ) : (x0, . . . , xn−1) ∈ X∗} ∈ {−∞, 0, 1, . . . , n},
where (Γ∗, ψ∗) < (Γ, ψ) is |Γ|+-saturated and rkφ is computed using the pregeometry of (Γ∗, ψ∗).
This is independent of the choice of |Γ|+-saturated (Γ∗, ψ∗) < (Γ, ψ) (see [1, Section 2] for a general
statement of this kind). Thus, we have a family of dimensions such that if φ ≤ ξ ∈ Ψ∞, then
dimφ(X) ≤ dimξ(X) for all definable X ⊆ Γn∞.

These dimensions also fit into the framework of [1]: In every model of Tlog, the pregeometry cl∞ is
defined by the collection of Llog-formulas of the form

∃x0 · · ·xm−1

(m−1∑
i=0

qiψ(xi) +
n−1∑
j=0

rjyj = u
)
,

9



where qi, rj ∈ Q for i = 0, . . . ,m−1 and j = 0, . . . , n−1. For φ ∈ Ψ, the pregeometry clφ is defined
in every model of ThLlog∪{φ}(Γ, ψ) by the collection of Llog ∪ {φ}-formulas of the form

∃x0 · · ·xm−1∃z
(
ψ(z) > φ ∧

(m−1∑
i=0

qiψ(xi) +
n−1∑
j=0

rjyj + z = u
))
.

It is not obvious that each dimφ is a dimension function on (Γ, ψ) in the sense of Definition 3.1,
although (D1)(a), (D1)(b), (D2), and (D3) are easy.

Lemma 3.8. For any φ ∈ Ψ∞, we have dimφ(Γ) = 1, i.e., dimφ satisfies (D1)(c).

Proof. Let (Γ∗, ψ∗) be an elementary extension of (Γ, ψ) containing an element α > Γ. We claim
that Γ〈α〉 = Γ⊕Qα. It is enough to show that Γ⊕Qα is closed under ψ∗, s, and p. Consider an
element γ + qα, where γ ∈ Γ and q ∈ Q6=. Since [α] > [Γ 6=], we have ψ∗(γ + qα) = ψ∗(α) = s0. In
particular, s0 = ψ∗(γ + qα− s0), so the Fixed Point Identity (Fact 2.2) gives s(γ + qα) = s0. We
also see that γ + qα is not in ψ∗((Γ⊕Qα) 6=), so p(γ + qα) =∞.

Having established this claim, we see that

ΨΓ〈α〉 = Ψ, {β ∈ Γ〈α〉 : ψ∗(β) > φ} = ∆φ,

so clφ(∅), computed in Γ〈α〉, is contained in Γ. Thus rkφ(α|Γ) = 1, so dimφ(Γ) = 1. �

In light of Lemma 3.8, to get that dimφ is a dimension function it remains to establish (D4), which
we do in Corollary 3.13 using part of the Small Sets Theorem. As a first step, compactness and
(D2) yield (1)⇔(5) of the Small Sets Theorem (or see [1, Lemma 2.3]).

Lemma 3.9. Let X ⊆ Γ be definable. Then dimφX ≤ 0 if and only if X is covered by finitely
many affine maps Ψn ×∆φ → Γ.

For the remainder of the paper, we call a definable subset X ⊆ Γ φ-small if dimφX ≤ 0; equiva-
lently, X is φ-small if it is covered by finitely many affine maps Ψn ×∆φ → Γ.

Connection to existential matroids. When working in a monster model, the pregeometries clφ fit
into the more flexible framework of existential matroids from [20]. Although we only explicitly use
that framework in the proof of Corollary 3.14 below (Corollary 3.14 is used in the proofs of (8)⇒(1)
of the Small Sets Theorem and (6)⇒(1) of the Kinda Small Sets Theorem), it has helped us to
understand pregeometries and dimension functions.

Lemma 3.10. Suppose (Γ, ψ) is a monster model of Tlog, expanded to the language Llog ∪ {φ}.
Then clφ is an existential matroid in the sense of [20].

3.3. The Small Sets Theorem. We first consider an example of a typical (∞-)small set.

Consider the definable set (pictured in Figure 3):

X := {(sx− x) + (sy − y) : x 6= y ∈ Ψ} ⊆ Γ.

In the standard model, the set X is countable and has the following explicit description:

X = {(0, . . . , 0︸ ︷︷ ︸
m

, 1, 0, . . . , 0︸ ︷︷ ︸
n

, 1, 0, 0, . . .) : m ≥ 1, n ≥ 0}.

To see that X is ∞-small using Lemma 3.9, consider the affine map:

F : Ψ4 → Γ, (x0, x1, x2, x3, ) 7→ (x0 − x1) + (x2 − x3)

and note that X ⊆ image(F ). Moreover, for the set:

W := {(x0, x1, x2, x3) : x0 = sx1, x2 = sx3, x1 < x3} ⊆ Ψ4,
10



0

0

Γ

Γ

X = {(sx− x) + (sy − y) : x 6= y ∈ Ψ}

X ′ = {sx− x : x ∈ Ψ} ∪ {0}X ′′ = {0}
−→

⇐
=

Figure 3: A set X with X,X ′, X ′′ 6= ∅ and X(3) = ∅.

we have a bijection F |W : W → X, where W is definable in the structure (Ψ;<). Next, observe
that after taking the derived set finitely many times, we will arrive at ∅. Indeed:

X ′ = {sx− x : x ∈ Ψ} ∪ {0}
= {(0, . . . , 0︸ ︷︷ ︸

m

, 1, 0, 0, . . .) : m ≥ 1} ∪ {0} (in the standard model)

and so X ′′ = {0} and thus X(3) = ∅. Next, consider the image πsn0(X) in the quotient Γ/∆sn0,
which we picture in Figure 4. Since in the standard model

∆sn0 = {(0, . . . , 0︸ ︷︷ ︸
n

, rn, rn+1, . . .)}

we have:
Γ/∆sn0 = {(r0, . . . , rn−1)} ∼= Rn

and thus πsn0(X) is the set of 0/1-vectors of length n that begin with 0 and contain ≤ 2-many 1’s.
Observe that in this case πφ(X) is finite, which indeed always happens when φ = sn0 for some n
(Corollary 3.26).

0

Γ/∆φ

X̄

Figure 4: The image in the quotient Γ/∆φ of the set in Figure 3 for the value φ = s50.

Here is the general case.

Small Sets Theorem 3.11. For φ ∈ Ψ∞ and X ⊆ Γ definable in (Γ, ψ), the following are
equivalent:

(1) dimφX ≤ 0.
(2) X̄ is a finite union of discrete sets.
(3) X̄ has empty interior.
(4) X does not contain an interval (a, b) such that b− a > ∆φ.
(5) X can be covered by finitely many affine maps Ψn ×∆φ → Γ.

11



(6) X̄ is d-finite.
(7) X̄ is nowhere dense
(8) X̄ is definably meager in Γ̄.
(9) X is Ψ∆φ-internal.

(10) X is Ψ∆φ-coanalysable.

Furthermore, if (Γ, ψ) is the standard model, then the above are additionally equivalent to:

(11) |X̄| ≤ ℵ0.
(12) |X̄| < 2ℵ0.

If φ <∞, then the above are additionally equivalent to:

(13) X̄ is closed and discrete, and thus X̄ ′ = ∅.

Finally, if φ =∞, then the above are equivalent to:

(14) X is dp-finite.
(15) The dp-rank of X is less than ℵ0.

See Subsections 4.1, 4.5 and 4.6 for precise definitions of definably meager, internality, coanalysabil-
ity, and dp-rank.

3.4. Proof of the Dimension Theorem from (1)⇔(4)⇔(5) of the Small Sets Theorem.

Corollary 3.12 (Uniqueness). Let d be a dimension function on (Γ, ψ). Then d = dimφ for some
φ ∈ Ψ∞.

Proof. By Corollary 3.6, let φ be such that d ∆φ = 0 and d ∆ξ = 1 for every ξ ∈ Ψ<φ. By Fact 3.2
it suffices to prove: for every definable X ⊆ Γ∞,

(a) if dimφX ≤ 0, then dX ≤ 0, and
(b) if dimφX = 1, then dX = 1.

Let X ⊆ Γ∞ be an arbitrary definable set. We may assume X ⊆ Γ since removing ∞ does not
change whether dimension is ≤ 0 or = 1. We have two cases:

• Suppose dimφX ≤ 0. By (D2) and Lemma 3.9, we further reduce to the case X = image(F ),
where F : Ψn ×∆φ → Γ is an affine map. Since d Ψ = 0 by Corollary 3.4, it follows from
Fact 3.2(5a,5b) that dX ≤ 0.
• Suppose dimφX = 1. Then by (4)⇒(1), X contains an interval (a, b) where b − a > ∆φ.

Thus d(a, b) = 1 by Corollary 3.6, and thus dX = 1 by Fact 3.2(1). �

Corollary 3.13 (Existence). For each φ ∈ Ψ∞, the function dimφ is a dimension function.

Proof. It remains to show that each dimφ satisfies (D4). Suppose S ⊆ Γn+1
∞ is definable and set

Bi := {a ∈ Γn∞ : dimφ Sa = i} for i = 0, 1. Then using (1)⇔(4) we see that B1 is definable:

B1 = {a ∈ Γn∞ : dimφ(Sa \ {∞}) = 1}
= {a ∈ Γn∞ : there exists an interval (a, b) ⊆ Sa \ {∞} such that b− a > ∆φ}.

Thus B0 is definable as well. It now follows from standard pregeometry arguments that dimφ Si =
dimφBi + i, where Si := {(x, y) ∈ S : x ∈ Bi}. This is asserted in [1, Proposition 2.7(2)]. �

Corollary 3.14. Fix d ∈ {−∞, 0, . . . , n} and suppose (I;≤) is a definable directed set and X ⊆
I × Γn∞ is a definable family such that Xa ⊆ Xb for every a ≤ b in I. If dimφXa ≤ d for every
a ∈ I, then dimφ(

⋃
a∈I Xa) ≤ d.

Proof. Let (Γ∗, ψ∗) be a monster model extending (Γ, ψ). Then Corollary 3.13 gives dimφ(X∗)a ≤ d
for every a ∈ I∗. By Lemma 3.10 and [20, Lemma 3.71], it follows that dimφ(

⋃
a∈I∗(X

∗)a) ≤ d.
Thus dimφ(

⋃
a∈I Xa) ≤ d since (

⋃
a∈I Xa)

∗ =
⋃
a∈I∗(X

∗)a. �
12



3.5. Higher arity definable sets. For definable subsets of Γn with n > 1, the conditions in the
Small Sets Theorem are clearly not equivalent. However, each turns out to be equivalent to either
having φ-dimension ≤ 0 (being “very small”) or having φ-dimension < n (being “kinda small”). In
this subsection, we freely use both the Small Sets Theorem and the Dimension Theorem.

Kinda Small Sets Theorem 3.15. For φ ∈ Ψ∞ and X ⊆ Γn definable in (Γ, ψ) the following
are equivalent:

(1) dimφX < n.
(2) X̄ has empty interior.
(3) X does not contain an open box

∏n
i=1(ai, bi) where bi − ai > ∆φ for each i.

(4) X can be covered by finitely many sets of the form

{α ∈ Γn : q · α ∈ Y }

where q ∈ Qn is not the zero tuple and Y ⊆ Γ is a definable φ-small set
(5) X̄ is nowhere dense.
(6) X̄ is definably meager in Γ̄n.

Proof. Suppose dimφX < n, and let α be a tuple in an elementary extension (Γ∗, ψ∗) of (Γ, ψ) with
α ∈ X∗. Then rkφ(α|Γ) < n, so α is Q-linearly dependent over

clφ(Γ) = Γ + spanQ(Ψ∗) + ∆∗φ.

By a standard compactness argument, X is covered by finitely many sets of the form

{α ∈ Γn : q · α ∈ Y }

where q ∈ Qn is not the zero tuple and where Y is the image of an affine map Ψm×∆φ → Γ. This
gives (1)⇒(4).

We now show that (4)⇒(5). Since nowhere dense sets form an ideal, we may assume that X is
of the form {α ∈ Γn : q · α ∈ Y }. Then X̄ ⊆ {ᾱ ∈ Γ̄n : q · ᾱ ∈ Ȳ }. We may further assume that
Ȳ is closed—when φ < ∞, this holds by (13) of the Small Sets Theorem, and when φ = ∞, then
Ȳ = Y is nowhere dense, so its closure is as well. Then X̄ is closed, so we need only show that X̄
has empty interior. Since the map ᾱ 7→ q · ᾱ : Γ̄n → Γ̄ is open, this follows from the fact that Ȳ has
empty interior.

The implications (5)⇒(2)⇒(3) are immediate. We establish the implication (3)⇒(1) in Propo-
sition 4.2 below. Finally, having established (5)⇒(1), the implications (5)⇒(6)⇒(1) follow as in
the n = 1 case done in Stage (IV) of the proof of the Small Sets Theorem below, also using
Corollary 3.14. �

Using Fact 3.2(6) and the equivalence (1)⇔(2) of the Kinda Small Sets Theorem, we obtain:

Corollary 3.16 (Coincidence with topological dimension). The dimension function dimφ coincides
with naive topological dimension in the quotient Γ̄. That is, for X ⊆ Γn and d ≤ n, we have
dimφX ≥ d if and only if π(X̄) has nonempty interior for some coordinate projection π : Γ̄n → Γ̄d.

Corollary 3.17 (Local linearity). Suppose f : Γn → Γ∞ is definable. Then there exists a definable
dense open set U ⊆ Γn such that f is locally affine at all x ∈ U . Moreover, there is a finite set
Q ∈ Qn that the “slopes” of the affine functions come from.

Proof. As Tlog has quantifier elimination and a universal axiomatization in the language Llog,
definable functions are given piecewise by terms. Thus, we may assume that f is a term τ . We
proceed by induction on complexity of terms, assuming that for any term σ less complex than τ ,
there is a definable dense open set Uσ on which σ is locally affine (with slopes coming from a finite
subset Qσ ⊆ Qn). If τ is a sum σ1 + σ2, then this still holds for τ on the dense open set Uσ1 ∩Uσ2 ,
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and if τ = −σ or δn(σ) for some n ≥ 1, then this still holds for τ on Uσ, so we may assume that τ
is either of the form ψ ◦ σ, s ◦ σ, or p ◦ σ.

Let V ⊆ Uσ be the set of x ∈ Γn at which σ is locally constant, so τ is locally constant on V
as well. Let W := Uσ \ V , so σ is locally affine and nonconstant on W . We will find a dense open
subset of W on which τ is locally constant. By Lemma 2.8, s is locally constant on Γ, ψ is locally
constant on Γ \ {0}, and p is locally constant (with constant value ∞) on Γ \ Ψ>s0. Thus, it is
enough to show that

X := {x ∈W : σ(x) ∈ {0} ∪Ψ>s0}
is nowhere dense.

For q ∈ Qσ and β ∈ Γ, let Wq,β be the set of x ∈ W such that σ(y) = q · y + β for y in an open
neighbourhood of x. Then (Wq,β)q∈Qσ ,β∈Γ is a definable family of disjoint open subsets of W with
W =

⋃
q,βWq,β. Let

Xq,β := {x ∈Wq,β : q · x+ β ∈ {0} ∪Ψ>s0},
so X =

⋃
q,β Xq,β and each Xq,β is nowhere dense by the equivalence (4)⇔(5) of the Kinda Small

Sets Theorem. Since the sets Wq,β are disjoint, we see that X is also nowhere dense, as desired. �

Corollary 3.18 (Uniform definability of dimension). Suppose S ⊆ Γn and f : S → Γm are definable
and fix d ∈ {−∞, 0, . . . , n}. Then

{(φ, b) : dimφ f
−1(b) = d} ⊆ Ψ∞ × Γm

is definable.

Proof. For any φ, we have dimφ f
−1(b) = −∞ if and only if b 6∈ f(S), so we may assume d ≥ 0.

It suffices to show that {(φ, b) : dimφ f
−1(b) ≥ d} is definable. By Fact 3.2(6) and the equivalence

(1)⇔(3) of the Kinda Small Sets Theorem, we have dimφ f
−1(b) ≥ d if and only if π(f−1(b))

contains an open box
∏d
i=1(ai, bi) with bi − ai > ∆φ for some coordinate projection π : Γn → Γd.

This is a definable condition on φ and b. �

Corollary 3.18 suggests considering the limits of dimφ and rkφ as φ increases in Ψ Note that⋂
φ∈Ψ ∆φ = {0} = ∆∞. This allows us to compute the ∞-dimension of a definable set X as a limit

of its φ-dimensions.

Corollary 3.19 (Continuity of dimension). Suppose X ⊆ Γn is definable. Then:

lim
φ→∞

dimφ(X) = dim∞(X).

Proof. Let d := dim∞(X). Since dimφ(X) is increasing in φ, it is enough to show that dimφ(X) ≥ d
for some φ ∈ Ψ. By Corollary 3.16, there is a coordinate projection π : Γn → Γd and an open box∏d
i=1(ai, bi) contained in π(X). Take φ large enough with bi− ai > ∆φ for i = 1, . . . , d. For this φ,

we have dimφX ≥ d. �

This continuity of dimension can fail for the ranks of individual elements:

Example 3.20. Let (Γ, ψ) be the standard model, and let α = (1, 1/2, 1/3, 1/4, . . .) be an element
in an immediate elementary extension (Γ∗, ψ∗) of (Γ, ψ) (cf. [24, Example 2]). Then inside (Γ∗, ψ∗)
we have α 6∈ cl∞ Γ, although α ∈

⋂
φ∈Ψ clφ Γ. Thus, limφ→∞ rkφ(α|Γ) = 0 < 1 = rk∞(α|Γ).

The following says that the closure of a definable set X ⊆ Γn in the initial topology induced by πφ
has the same φ-dimension as X. This confirms [20, Conjecture 9.11] in our setting.

Corollary 3.21. Let X ⊆ Γn be definable. Then dimφ π
−1
φ (clΓ̄n(X̄)) = dimφX. Hence, X has the

same φ-dimension as its topological closure in the topology coming from the order topology on Γ.
14



Proof. From X ⊆ π−1
φ (clΓ̄n(X̄)), we get dimφX ≤ dimφ π

−1
φ (clΓ̄n(X̄)). Now observe that

dimφX < n ⇐⇒ dimφ π
−1
φ (clΓ̄n(X̄)) < n,

which follows from (1)⇔(5) of the Kinda Small Sets Theorem and the fact that X̄ is nowhere dense
if and only if

clΓ̄n(X̄) = πφ(π−1
φ (clΓ̄n(X̄)))

is nowhere dense by Lemma A.3. Suppose dimφ π
−1
φ (clΓ̄n(X̄)) = d and use Fact 3.2(6) to take a

projection π : Γn → Γd with dimφ π(π−1
φ (clΓ̄n(X̄))) = d. Then

π(π−1
φ (clΓ̄n(X̄))) = π−1

φ (π(clΓ̄n(X̄))) ⊆ π−1
φ (clΓ̄d(π(X̄))),

using Lemma A.1 for the containment. Hence dimφ π
−1
φ (clΓ̄d(π(X̄))) = d, so dimφ π(X) = d by the

equivalence displayed above, yielding dimφX = d. �

Very Small Sets Theorem 3.22. For φ ∈ Ψ∞ and X ⊆ Γn definable in (Γ, ψ) the following are
equivalent:

(1) dimφX ≤ 0.
(2) X is contained in a product

∏n
i=1Xi, where each Xi ⊆ Γ is a definable φ-small set.

(3) X̄ is a finite union of discrete sets.
(4) X can be covered by finitely many affine maps Ψm ×∆φ → Γn.
(5) X̄ is d-finite.
(6) X is Ψ∆φ-internal.
(7) X is Ψ∆φ-coanalysable.

Furthermore, if (Γ, ψ) is the standard model, then the above are additionally equivalent to:

(8) |X̄| ≤ ℵ0.
(9) |X̄| < 2ℵ0.

If φ <∞, then the above are additionally equivalent to:

(10) X̄ is closed and discrete, and thus X̄ ′ = ∅.

Finally, if φ =∞, then the above are additionally equivalent to:

(11) X is dp-finite.
(12) The dp-rank of X is less than ℵ0.

Proof. For (1)⇒(2), let Xi be the coordinate projection of X onto the ith coordinate. Then
X ⊆

∏n
i=1Xi and dimφXi ≤ dimφX ≤ 0 by Fact 3.2(5b). Suppose (2) holds and for each

i ∈ {1, . . . , n}, take affine maps Fi,0, . . . , Fi,ni : Ψm ×∆φ → Γ whose images cover Xi (we arrange
that m is the same for each Fi,j). For j = (j1, . . . , jn) ∈ Nn with ji ≤ ni for each i, we let
Fj : Ψm ×∆φ → Γn be the affine map (F1,j1 , F2,j2 , . . . , Fn,jn). Then X is covered by the images of
the (finitely many) Fj , establishing (4).

We have (4)⇒(6) by the definition of internality (see Lemma 4.16) and (6)⇒(7) since internality
always implies coanalysability (see Remark 4.20). Using Lemma 4.21, we obtain (7)⇒(1), since
dimφ Ψ∆φ = 0.

Take X1, . . . , Xn ⊆ Γ as in (2), so the Small Sets Theorem gives natural numbers m1, . . . ,mn

such that X̄
(mi)
i = ∅ for each i. Using Lemma A.17 and induction on n, we get X̄(m) = ∅ for

m = m1 + · · ·+mn, so (2)⇒(5), and we always have (5)⇒(3) (see Lemma A.13).
Let X ⊆ Γn and suppose that X̄ is a finite union of discrete sets. To establish (3)⇒(1), we need

to show that dimφX ≤ 0. We proceed by induction on n (the case n = 1 being the Small Sets
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Theorem). Since X̄ is nowhere dense (Lemma A.5), the Kinda Small Sets Theorem 3.15 tells us
that X can be covered by finitely many sets of the form

{α ∈ Γn : q · α ∈ Y }

where q ∈ Qn is a tuple of rational numbers, not all zero, and Y ⊆ Γ is definable and φ-small.
Using (D2), we may assume that X is contained in one of these sets. For γ ∈ Y , let Xγ :=
{α ∈ X : q · α = γ}, so Xγ is the intersection of X with the hyperplane {α ∈ Γn : q · α = γ},
which is homeomorphic to Γn−1 via some coordinate projection map π : Γn → Γn−1. Clearly, Xγ

is also a finite union of discrete sets, so π(Xγ) = π(Xγ) is a finite union of discrete sets as well.
Our induction hypothesis and Fact 3.2(5b) give dimφXγ = dimφ π(Xγ) ≤ 0. Finally, using that
X =

⋃
γ∈Y Xγ , that dimφ Y ≤ 0, and Fact 3.2(5c), we get that dimφX ≤ 0.

In the case that φ <∞, we obtain (2)⇒(10), using that a product of closed discrete sets is closed
and discrete. Then (10)⇒(5) trivially. If φ =∞, then (2)⇒(11) by Fact 4.22, (11)⇒(12) is trivial,
and (12)⇒(2) again by Fact 4.22, taking Xi to be the coordinate projection of X onto the ith
coordinate. Finally, the equivalence (1)⇔(2) and basic properties of cardinality give (1)⇔(8)⇔(9)
in the standard model. �

Remark 3.23. Let X ⊆ Γn be definable with dim∞X ≤ 0. Then X is already definable in the
reduct (Γ,Ψ) by (4) above, since the structure (Ψ;<) is purely stably embedded.

Remark 3.24. The equivalence (8)⇔(9) above asserts that “the continuum hypothesis holds for
definable sets in the standard model”.

Corollary 3.25 (d-minimality). The theory Tlog is d-minimal in the stronger sense defined by
Fornasiero in [20, Definition 9.1], i.e.:

(1) If X ⊆ Γ is definable with empty interior, then X is a finite union of discrete sets.
(2) If X ⊆ Γn is definable and discrete, then π1(X) has empty interior, where π1 is the projec-

tion onto the first coordinate.
(3) If X ⊆ Γ2 and U ⊆ π1(X) are definable, U is open and nonempty, and Xa has nonempty

interior for each a ∈ U , then X has nonempty interior.

Proof. The first condition holds by the Small Sets Theorem. For X as in the second condition, the
Very Small Sets Theorem 3.22 gives dim∞ π1X ≤ dim∞X ≤ 0, so π1X has empty interior by the
Small Sets Theorem. For X,U as in the third condition, we have dim∞ U = 1 = dim∞Xa for all
a ∈ U by the Small Sets Theorem. Then dim∞X = 2, so X has nonempty interior by the Kinda
Small Sets Theorem 3.15. �

Corollary 3.26. Let X ⊆ Γn be definable and suppose φ = sk0 for some k. Then dimφX ≤ 0 if
and only if X̄ is finite.

Proof. The implication (10)⇒(1) of the Very Small Sets Theorem tells us that dimφX ≤ 0 if X̄ is
finite. For the other implication, it suffices by (1)⇒(4) of the Very Small Sets Theorem to consider
the case X = image(F ), where F : Ψm ×∆φ → Γn is an affine map. Define G : (Ψ≤φ)m → Γn by

G(α) := F (α, 0). Then image(G) is finite, and image(G) = X̄. �

Remark 3.27. The statements on local linearity (Corollary 3.17) and d-minimality (Corollary 3.25)
are given only in the φ = ∞ case for simplicity, although there exist uniform versions of these
statements as well. For this one must work either on the quotients Γ̄n, or consider the initial
topology on Γn induced by the projection πφ : Γn → Γ̄n.

3.6. Failure of elimination of imaginaries. First observe the following lemma:
16



Lemma 3.28. Let X ⊆ Γ be a ∅-definable set and let E be a ∅-definable equivalence relation on
X. Suppose that in the standard model E has uncountably many uncountable equivalence classes.
Then there is no ∅-definable function f : X → Γn∞ such that f(x) = f(y)⇔ xEy for x, y ∈ X.

Proof. Suppose towards contradiction that there is such a function f . Let

Z = {z ∈ f(X) : dim∞ f
−1(z) = 1}.

By our assumption on E and the equivalence (1)⇔(11) in the Small Sets Theorem, dim∞(Z) ≥ 1.
But then dim∞(X) ≥ 2 by Fact 3.2(5c), contradicting that X ⊆ Γ. �

This lemma can be used to show that Tlog does not have elimination of imaginaries in the 1-sorted
language Llog; see [39, Lemma 8.4.7]. Specifically, we consider the analogue of the so-called RV

sort, which corresponds to the equivalence relation ∼ψ on Γ 6= defined via:

x ∼ψ y ⇐⇒ ψ(x) < ψ(x− y).

Corollary 3.29. The imaginary Γ6=/∼ψ is not eliminated.

4. Proof of the Small Sets Theorem

In this section we prove the Small Sets Theorem as explained in Subsection 4.1 and indicated in
the diagram below. To avoid any confusion, we emphasize that the Small Sets Theorem and the
Dimension Theorem are proved simultaneously in three steps:

(1st) the equivalences between (1)-(7) and (13) of the Small Sets Theorem are established,
(2nd) the Dimension Theorem is then proved as explained in Subsection 3.4, and
(3rd) the remaining equivalences of the Small Sets Theorem are then established, possibly with

the help of the Dimension Theorem.

In this section, we adopt the same global conventions as in Section 3.

4.1. Roadmap of the proof. We provide the proof in stages, with each stage increasing the set
of properties proved to be equivalent to (1).

(7)

(3)(2)

(4)(6)

(1)(5)

(10)(9)

(12)

(11)

(15)

(14)
(8)

(13)

Stage (I): Incorporating (5). We start with (1)⇔(5), which is just Lemma 3.9.
Stage (II): Incorporating (2), (3), (4), (6), (7), and (13) (Subsections 4.2, 4.3, and 4.4).
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• (4)⇒(1) Consider the contrapositive: suppose dimφX = 1. Then there is some α in an
elementary extension of (Γ, ψ) such that α ∈ X∗ and rkφ(α|Γ) = 1. Since X ∈ tp(α|Γ), it
follows from Proposition 4.2 that X contains an interval (a, b) such that b− a > ∆φ.
• (5)⇒(6) (case φ = ∞) This is Corollary 4.9, which follows from explicitly computing the

derived set of the image of an affine map Ψn → Γ in Proposition 4.7. To put this in more
topological terms: Lemma 4.8 shows that the image of an affine map Ψn → Γ is d-finite, so
(6) follows from the fact that the d-finite sets form an ideal (see Lemma A.12).
• (5)⇒(13)⇒(6) (case φ <∞) The step (5)⇒(13) is Corollary 4.15. The direction (13)⇒(6)

is trivial.
• (6)⇒(2) This direction is always true for arbitrary subsets of arbitrary topological spaces,

i.e., the ideal of d-finite sets is always contained in the ideal generated by the discrete sets
(see Lemma A.13). Note that in complete generality, the converse can fail (see Exam-
ples A.14 and A.15).
• (2)⇒ (7) This direction is true for arbitrary subsets of arbitrary topological spaces that are
T1 and have no isolated points, i.e., the ideal generated by discrete sets is always contained
in the ideal of nowhere dense sets under these assumptions; see Lemma A.5. Note that the
converse will fail for definable subsets of Γn for n > 1.
• (7)⇒ (3) This direction is always true; see Lemma A.4.
• (3)⇒(4) This step is trivial.

Note: At this point in the proof of the Small Sets Theorem we can prove the Dimension Theorem
(Corollaries 3.12 and 3.13), and thus we may freely use the fact that each dimφ is a dimension
function in the rest of the proof of the Small Sets Theorem.

Stage (III): Incorporating (8) (definably meager). We now say what it means for an arbitrary
subset of Γ̄n to be definably meager ; recall that we are working in a 1-sorted setting, so we give a
definition purely in terms of definable subsets of Γn.

Definition 4.1. Suppose Z ⊆ Γ̄n. We say that Z is definably meager in Γ̄n if there exist a
definable directed set (I;≤) and a definable family Y ⊆ I × Γn such that for every a, b ∈ I:

(1) Ya is nowhere dense in Γ̄n,
(2) if a ≤ b, then Ya ⊆ Yb, and
(3) Z ⊆

⋃
a Ya.

In this case, we say that (I;≤) and Y witness that Z is definably meager.

• (7)⇒(8) This direction is trivial. Indeed, if X̄ is nowhere dense, then the singleton directed
set ({∗};≤) and the definable family Y := {∗} ×X witnesses that X̄ is definably meager.
• (8)⇒(1) Suppose X̄ is definably meager, witnessed by (I;≤) and Y ⊆ I × Γ. In particular,

each Ya is φ-small by (7)⇒(1). By replacing Ya with
⋃
b≤a Yb (which does not change the set

Ya, so Ya is still φ-small), we may assume that Ya ⊆ Yb for a ≤ b ∈ I. It now follows from
Corollary 3.14 that W :=

⋃
a∈I Ya also satisfies dimφW ≤ 0. Thus W̄ is nowhere dense by

(1)⇒(7), and so X̄ ⊆ W̄ is also nowhere dense.

Stage (IV): Incorporating (9) and (10) (internality and coanalysability; Subsection 4.5).

• (5)⇒(9) This is clear since (5) is expressing a precise form of internality ; see Lemma 4.16.
• (9)⇒(10) This is because internality always implies coanalysability; see Remark 4.20.
• (10)⇒(1) If X is Ψ∆φ-coanalysable, then since dimφ Ψ∆φ = 0, it follows from Lemma 4.21

that dimφX ≤ 0. Note that this step uses the fact that dimφ is a dimension function, which
we established after Stage (II) above.

Stage (V): Incorporating (11) and (12) (cardinality in the standard model).

• (5)⇒(11) If X satisfies (5), then X ⊆ Y + ∆φ for some ∞-small definable set Y . Since Y
is countable in the standard model and X̄ ⊆ Ȳ , it follows that |X̄| ≤ ℵ0.
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• (11)⇒(12) This is trivial.
• (12)⇒(3) This follows easily from the observation that in the linear order Γlog/∆φ, each

interval has size continuum.

Stage (VI): Incorporating (14) and (15) (dp-rank; Subsection 4.6).

• (5)⇒(14) This is by Fact 4.22, which uses that dp(Ψ) = 1.
• (14)⇒(15) This is trivial.
• (15)⇒(3) This is Lemma 4.23.

4.2. Finding open boxes. Below, we show that any definable subset of Γ of φ-dimension 1 con-
tains an open interval of width > ∆φ, yielding (4)⇒(1) of the Small Sets Theorem. This is the
unary case of the more general Proposition 4.2, which we need to establish the analogous direction
(3)⇒(1) of the Kinda Small Sets Theorem. It is not clear to us whether this n-ary version can be
deduced from the unary version.

Proposition 4.2. Let α = (α1, . . . , αn) be a tuple in an elementary extension of (Γ, ψ) with
rkφ(α|Γ) = n. Then every set X in tp(α|Γ) contains an open box

∏n
i=1(ai, bi) where bi − ai > ∆φ

for each i.

Proof. We begin by replacing Γ with clφ(Γ) ⊆ Γ〈α〉; then Γ is still a model of Tlog by Lemma 2.5
and we still have rkφ(α|Γ) = n, but we’ve arranged that ΨΓ〈α〉 = Ψ, so

Γ〈α〉 ∼= Γ⊕
n⊕
i=1

Qαi.

Take δ in a further elementary extension (Γ∗, ψ∗) of Γ〈α〉 with

∆∗φ < δ < Γ〈α〉>∆∗φ .

Note that if φ < ∞, then ψ∗(δ) = φ and that if φ = ∞, then ψ∗(δ) > Ψ. By compactness,
it is enough to show that if X is in tp(α|Γ), then X∗ contains the box

∏n
i=1(αi − δ, αi + δ).

That is, we must show that for any ε = (ε1, . . . , εn) ∈ (Γ∗)n with |εi| < δ for each i, we have
tp(α|Γ) = tp(α + ε|Γ). Fix such an ε; then quantifier elimination allows us to further reduce the
problem to finding an Llog-isomorphism ι : Γ〈α〉 → Γ〈α+ ε〉 over Γ with ι(α) = α+ ε.

Note that for any β ∈ Γ〈α〉 \ Γ, we have ψ∗(β) ≤ φ. Thus, |β| ∈ Γ〈α〉>∆∗φ , so [εi] ≤ [δ] < [β]. It
follows that for γ ∈ Γ and q ∈ Qn, the element γ + q · α is positive if and only if γ + q · (α + ε) is
positive, so we have an ordered abelian group isomorphism

ι : Γ⊕
n⊕
i=1

Qαi → Γ⊕
n⊕
i=1

Q(αi + εi)

over Γ with ι(α) = α+ ε.
It remains to prove that ι commutes with ψ, s, and p. Consider an arbitrary element β ∈ Γ〈α〉;

we can assume that β 6∈ Γ. Since ΨΓ〈α〉 = Ψ, it is enough to show that ψ∗(ι(β)) = ψ∗(β), and
likewise for s and p. Take q ∈ Qn distinct from the zero tuple with ι(β) = β + q · ε. Since [εi] < [β]
for each i, we have [β + q · ε] = [β]; in particular, ψ∗(β + q · ε) = ψ∗(β). The Integral Identity
(Fact 2.2) gives

∫
β = β − sβ ∈ Γ〈α〉 \ Γ, so we have

(
∫
β + q · ε)′ =

∫
β + q · ε+ ψ∗(

∫
β + q · ε) =

∫
β + q · ε+ ψ∗(

∫
β) = β + q · ε.

It follows that
∫
β + q · ε =

∫
(β + q · ε), and we again use the Integral Identity to conclude

that sβ = β −
∫
β = β + q · ε −

∫
(β + q · ε) = s(β + q · ε). Finally for p, we note that since

β 6∈ Γ ⊇ Ψ = ψ∗((Γ⊕Qα) 6=) and the same for β + q · ε, we have p(β) =∞ = p(β + q · ε). �
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4.3. Derived sets and Ψ-functions. We establish here the direction (5)⇒(6) of the Small Sets
Theorem in the case φ =∞.

For α, β ∈ Γ with β 6= 0, set α ≺ψ β if ψ(α) > ψ(β), so if α ≺ψ β, then [α] < [β].

Lemma 4.3. For every ε ∈ Γ>, there exist δ0, δ1 ∈ Ψ≥ψ(ε) such that 0 < δ0 − δ1 ≺ψ ε.

Proof. Set δ0 := sψ(ε) and δ1 := ψ(ε). Then δ0 − δ1 = sψ(ε) − ψ(ε) = −
∫
ψ(ε) by the Integral

Identity (Fact 2.2). It remains to note that 0 < −
∫
ψ(ε) ≺ψ ε by [3, Lemma 9.2.18(iii)]. �

Definition. A Ψ-function is F : ΨI → Γ defined by Fα =
∑

i∈I qiαi + β for α = (αi)i∈I ∈ ΨI ,

where I ⊆ N is finite, (qi)i∈I ∈ (Q×)I , and β ∈ Γ.

We allow I = ∅, in which case F has constant value β. Note that each ∞-small subset of Γ is
contained in finite unions of images of Ψ-functions. Studying the limit points of such images will
establish the part of the Small Sets Theorem claimed above.

In the remainder of this subsection, F : ΨI → Γ is a Ψ-function given by Fα =
∑

i∈I qiαi + β as in

the definition above. We set ‖F‖ :=
∑

i∈I qi. For J ⊆ I, we define the Ψ-function FJ : ΨJ → Γ by

FJα :=
∑
j∈J

qjαj + β,

for α = (αj)j∈J ∈ ΨJ , in which case Fα = FJ(αj)j∈J + FI\J(αi)i∈I\J − β for all α ∈ ΨI . When

convenient, we implicitly regard F as a function ΨJ → Γ, for J ⊇ I, by setting qj = 0 for j ∈ J \ I.
In particular, for J ⊆ I, we write FJα instead of FJ(αj)j∈J , for α ∈ ΨI .

Recall that Ψ is Q-linearly independent [23, Lemma 6.8], which yields the following uniqueness
property.

Lemma 4.4. If G : ΨJ → Γ is a Ψ-function with Gα =
∑

j∈J q̃jαj + β̃ such that Fα = Gα for all

α ∈ ΨI∪J , then I = J , qi = q̃i for all i ∈ I, and β = β̃.

Lemma 4.5. Suppose that ‖F‖ = 0 and I 6= ∅. Then for every ε ∈ Γ> there exists α ∈ ΨI such
that 0 < |Fα− β| ≺ψ ε.

Proof. Pick i0 ∈ I and set I0 := I \ {i0}. Let ε > 0, so Lemma 4.3 gives δ0, δ1 ∈ Ψ such that
0 < δ0 − δ1 ≺ψ ε. Then α ∈ ΨI defined by αi0 := δ0 and αi := δ1 for i ∈ I0 satisfies

Fα− β = qi0αi0 +
∑

i∈I0 qiαi = qi0(δ0 + q−1
i0

∑
i∈I0 qiδ1) = qi0(δ0 − δ1),

and thus 0 < |Fα− β| ≺ψ ε. �

In fact, the assumptions on F in the lemma above characterize when β is a limit point of image(F )
in Γ.

Corollary 4.6. We have β ∈ image(F )′ ⇔ ‖F‖ = 0 and I 6= ∅.

Proof. If ‖F‖ = 0 and I 6= ∅, then Lemma 4.5 shows that β ∈ image(F )′. Conversely, if I = ∅, then
image(F ) = {β} has no limit points, and if ‖F‖ 6= 0, then [23, Lemma 6.4] gives ψ(Fα − β) = s0
for all α ∈ ΨI . �

Proposition 4.7. We have

image(F )′ =
⋃

∅6=J⊆I
‖FJ‖=0

image(FI\J).
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Proof. First, suppose that ∅ 6= J ⊆ I and ‖FJ‖ = 0. Let (αi)i∈I\J ∈ ΨI\J and ε ∈ Γ> be arbitrary.

Lemma 4.5 gives (αj)j∈J ∈ ΨJ so that 0 < |FJα− β| ≺ψ ε, where α := (αi)i∈I . Note that

FJα = FJα+ FI\Jα− FI\Jα = Fα+ β − FI\Jα,

so 0 < |FI\Jα− Fα| ≺ψ ε. Hence FI\Jα ∈ image(F )′.
For the reverse inclusion, take an elementary extension (Γ∗, ψ∗) of (Γ, ψ) containing an element

δ ∈ (Ψ∗)>Ψ. By QE and UA, we arrange that Γ∗ = Γ〈δ〉. The proof of [23, Lemma 4.11] shows

Γ〈δ〉 = Γ⊕
⊕
k∈Z

Qskδ

as an internal direct sum of Q-linear subspaces, where skδ := p−kδ for k < 0 in Z. Fix γ ∈ Γ and
assume that for every ε ∈ Γ>, there exists α ∈ ΨI such that 0 < |Fα − γ| < ε. Set ε(δ) := −

∫
δ,

which satisfies 0 < ε(δ) < Γ> since
∫

Ψ is cofinal in Γ< by [3, Lemma 9.2.15]. By elementarity, this

yields α∗ ∈ (Ψ∗)I such that

0 < |Fα∗ − γ| < ε(δ).

It follows that Fα∗ 6∈ Γ, so J := {i ∈ I : α∗i > Ψ} 6= ∅. Note that I \ J = {i ∈ I : α∗i ∈ Ψ}. This

gives for each j ∈ J a kj ∈ Z such that α∗j = skjδ. Setting β̃ := γ − FI\Jα∗ ∈ Γ, we have

0 <
∣∣∑
j∈J

qjs
kjδ − β̃

∣∣ < ε(δ).

By combining some of the coefficients qj ∈ Q× and shrinking I if necessary, we arrange that the
integers kj are distinct. Note that we still have J 6= ∅. Then

Ψ∗ 3 ψ
(∑
j∈J

qjs
kjδ − β̃

)
≥ ψ(ε(δ)) = sδ > Ψ.

Now, [23, Theorem 6.6] completely characterizes the values of ψ(
∑

j∈J qjs
kjδ−β̃). Since ψ(β̃) ∈ Ψ∞,

this characterization forces either sk+1δ < ψ(β̃) or sk+1δ < s(q−1β̃), where k := minj∈J{kj} and

q :=
∑

j∈J qj . The latter is impossible, since s(q−1β̃) ∈ Ψ < sk+1δ. Hence sk+1δ < ψ(β̃), in which

case Ψ < sk+1δ gives ψ(β̃) =∞. That is, β̃ = 0, as desired. That q = 0 also follows from the case
distinctions in [23, Theorem 6.6]. �

Lemma 4.8. If |I| = n ≥ 1, then image(F )(n) = ∅.

Proof. Note that image(F )′ = {β}′ = ∅ when I = ∅. By Proposition 4.7, we have

image(F )′ =
⋃

∅6=J⊆I
‖FJ‖=0

image(FI\J).

By induction on n, for each nonempty J ⊆ I we have image(FI\J)(n−1) = ∅. Then

image(F )(n) =
⋃

∅6=J⊆I
‖FJ‖=0

image(FI\J)(n−1) = ∅,

as desired (see Lemma A.9). �

Note that Lemma 4.8 only provides an upper bound. For example, the set X = Ψ + · · · + Ψ of
n-fold sums satisfies X ′ = ∅.

The following gives (5)⇒(6) in the Small Sets Theorem in the case φ =∞:

Corollary 4.9. If A is ∞-small, then A(n) = ∅ for some n ∈ N.
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Proof. This is immediate from Lemma 4.8 and the fact that d-finite sets form an ideal (see
Lemma A.12). �

We have now completed enough of the Small Sets Theorem (i.e., Stage (II) in case φ =∞) to get
that dim∞ is a dimension function; see Corollary 3.13. This yields some additional uniformity in
families, for which we define a parametrized Ψ-function to be F : Ψn × Γ→ Γ defined by

F (α, β) =

n−1∑
i=0

qiαi + β,

for α = (α0, . . . , αn−1) ∈ Ψn and β ∈ Γ, where qi ∈ Q× for i = 0, . . . , n− 1.

Corollary 4.10. If X ⊆ Γm+1 is definable, there exist parametrized Ψ-functions Fi : Ψni × Γ→ Γ
for i = 0, . . . , k − 1 such that for all δ ∈ Γm with dim∞Xδ = 0, we have

Xδ ⊆
k−1⋃
i=0

image(Fi(·, βi))

for some βi ∈ Γ.

Proof. This follows from [1, Lemma 2.7]. �

Corollary 4.11. If X ⊆ Γm+1 is definable, then there is N ∈ N such that for all δ ∈ Γm with

dim∞Xδ = 0, we have X
(N)
δ = ∅.

Proof. Note that image(F (·, β))(n) = ∅ for all β ∈ Γ, where F : Ψn × Γ → Γ is a parametrized
Ψ-function, so this result follows from the previous corollary. �

4.4. Equilateral sets and quotients. In this subsection we establish (5)⇒(13) of the Small Sets
Theorem, which follows from purely valuation-theoretic arguments. For that, let (G,S; v) be an
ordered abelian group with a convex (surjective) valuation v : G→ S∞, where S is an ordered set
and we extend S to S∞ := S ∪ {∞} in the usual way. Note that if S has no greatest element, then
the valuation topology on G agrees with the order topology on G. On the other hand, if S has a
maximum, then the valuation topology on G is discrete. See for instance [3, Chapter 2] for basic
definitions and facts.

Let s ∈ S and X ⊆ G. We say X is s-equilateral if v(a − b) = s for all distinct a, b ∈ X. We
say X is anti-equilateral if for every s, X contains no infinite s-equilateral subset. To see how
this property passes to quotients, let ∆s := {a ∈ G : va > s}, which is a convex subgroup of G.
Then v induces a convex valuation v : G/∆s → S≤s∞ on the quotient ordered abelian group G/∆s,
defined by v(a + ∆s) = va for a ∈ G \∆s. Let X̄ denote the image of X under the quotient map
G→ G/∆s.

Lemma 4.12. If X ⊆ G is anti-equilateral, then X̄ ⊆ G/∆s is anti-equilateral.

Proof. Let X ⊆ G and suppose that X̄ ⊆ G/∆s is an infinite s′-equilateral set, where s′ ∈ S≤s.
Take Y ⊆ X so that the quotient map G→ G/∆s restricts to a bijection Y → X̄. Then Y is infinite
and it is easy to check that Y is s′-equilateral, for if y1, y2 ∈ Y with y1 6= y2, then y1− y2 /∈ ∆s and
so

v(y1 − y2) = v
(
(y1 − y2) + ∆s

)
= v

(
(y1 + ∆s)− (y2 + ∆s)

)
= s′. �

Lemma 4.13. Suppose that S has a maximum s = maxS and X ⊆ G is anti-equilateral. Then X
is closed and discrete in the order topology on G.
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Proof. We can assume that G is not discrete. To show that X is discrete, let x ∈ X. Then we
have an interval (a, b) in G with x ∈ (a, b) and v(b − a) = s. It follows that (a, b) is an infinite
s-equilateral set, so (a, b)∩X is finite. By shrinking (a, b) further, we arrange that (a, b)∩X = {x},
as desired. Similarly, if x ∈ cl(X), then x ∈ X. �

The previous lemma only uses that X contains no infinite s-equilateral subset. Now we apply these
lemmas to the setting (Γ, ψ) |= Tlog, construed as a structure (Γ,Ψ;ψ) in the notation above.

Lemma 4.14. Every ∞-small X ⊆ Γ is anti-equilateral.

Proof. Let F : Ψn → Γ be a Ψ-function and fix φ ∈ Ψ. By the Pigeonhole Principle, it suffices
to prove that image(F ) contains no infinite φ-equilateral subset. Let Y ⊆ Ψn be infinite and, for
k = 0, . . . , n − 1, let πk : Y → Ψ be projection onto coordinate k. If π−1

0 (pφ) is finite, replacing

Y by Y \ π−1
0 (pφ) arranges that π−1

0 (pφ) = ∅ while keeping Y infinite. If π−1
0 (pφ) is infinite,

replacing Y by π−1
0 (pφ) arranges that π−1

0 (pφ) = Y while keeping Y infinite. Repeating this

procedure ensures that for each k = 0, . . . , n − 1, either π−1
k (pφ) = ∅ or π−1

k (pφ) = Y . Let

I = {k ∈ {0, . . . , n − 1} : π−1
k (pφ) = ∅}, so ψ(F (α) − F (β)) = ψ(FI(α) − FI(β)) for all α, β ∈ Y .

For fixed α, β ∈ Y , by combining the coefficients of the equal αi and βj , i, j ∈ I, we see that
FI(α)− FI(β) is equal to a Q-linear combination of distinct such αi, βj with coefficients summing
to 0. Then by [23, Lemma 6.4], ψ(FI(α) − FI(β)) ∈ {sαi, sβi : i ∈ I} ∪ {∞}. In particular,
ψ(F (α) − F (β)) 6= φ for all α, β ∈ Y . Now, if Y ⊆ Ψn is such that F (Y ) ⊆ image(F ) is φ-
equilateral, then the above shows that F (Y ) is finite. �

Note that the quotient map πφ : Γ→ Γ/∆φ is injective on Ψ<sφ by the Successor Identity (Fact 2.2).

In particular, the value set Ψ<sφ of Γ/∆φ is order isomorphic to Ψ̄ via πφ, and we consider Γ/∆φ

as a convexly valued ordered abelian group with ψ : (Γ/∆φ)6= → Ψ̄. Moreover, (Γ/∆φ, ψ) is an
asymptotic couple by [3, Lemma 9.2.24], but that is not needed here.

Corollary 4.15. If X ⊆ Γ is φ-small and φ ∈ Ψ, then X̄ ⊆ Γ/∆φ is closed and discrete.

Proof. Let Y ⊆ Γ be ∞-small, so Y is anti-equilateral. Note that ψ((Γ/∆φ)6=) has a maximum φ̄.
Then by Lemmas 4.12 and 4.13, Ȳ is closed and discrete in Γ/∆φ. It remains to note that for every
φ-small X ⊆ Γ, there is an ∞-small Y ⊆ Γ with Ȳ = X̄. �

4.5. Internality and coanalysability. We now investigate how previous properties are connected
to the model-theoretic notion of internality to a definable set, namely internality to the distinguished
family of sets Ψ ∪∆φ.

Definition. Let X ⊆ Γn∞ be definable. We say that X is Ψ∆φ-internal if X ⊆ image(f) for some
definable f : (Ψ ∪∆φ)m → Γn∞.

Note that the collection of Ψ∆φ-internal definable subsets of Γn∞ (for a fixed n) form an ideal of
definable sets on Γn∞. Hence:

Lemma 4.16. If X ⊆ Γn can be covered by finitely many affine maps Ψm ×∆φ → Γn, then X is
Ψ∆φ-internal.

In case φ = ∞, [23, Theorem 6.3] shows that each definable F : Ψ → Γ∞ is given piecewise by
so-called s-functions. Now we generalize this notion in order to characterize definable functions
F : Ψn → Γ∞ in Proposition 4.17, answering a question Hieronymi asked the first-named author.
This proposition is not used except in Corollary 4.19. In particular, our proof of the Small Sets
Theorem does not require it. Nevertheless, it gives a more precise description of Ψ-internal sets.
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Definition. We call F : Ψm → Γ∞ a generalized s-function if for α = (α0, . . . , αm−1) ∈ Ψm

F (α) =

m−1∑
i=0

n−1∑
j=0

qi,js
kj (αi) + β,

where β ∈ Γ∞, qi,j ∈ Q, and kj ∈ Z for i = 0, . . . ,m− 1 and j = 0, . . . , n− 1. Here, sk := p−k for
k ∈ Z<.

Proposition 4.17. Let F : Ψn → Γ∞ be definable. Then F is given piecewise by (finitely many)
generalized s-functions.

Proof. Let (Γ∗, ψ∗) be a |Γ|+-saturated elementary extension of (Γ, ψ) and (α∗0, . . . , α
∗
n−1) ∈ (Ψ∗)n.

By universal axiomatization and quantifier elimination, we have F (α∗0, . . . , α
∗
n−1) ∈ Γ〈α∗0, . . . , α∗n−1〉.

Let i0 = min{i < n : α∗i /∈ Ψ}. Then either α∗i0 > Ψ or there is a nonempty downward closed B ( Ψ

with s(B) ⊆ B and B < α∗i0 < Ψ>B. In the former case appealing to [23, Lemma 4.11] and its

proof, and in the latter to [23, Lemma 4.12] and its proof, we have Γ〈α∗i0〉 = Γ ⊕
⊕

k∈ZQsk(α∗i0)
as Q-linear subspaces of Γ∗. Note that in applying [23, Lemma 4.12], condition 2. is satisfied
because B < α∗i0 < Ψ>B, s(B) ⊆ B, and s is increasing on the downward closure of Ψ in Γ by [23,

Corollary 3.6]. Now take i1 = min{i < n : α∗i /∈ Ψ ∪ {sk(α∗i0) : k ∈ Z}} and proceed by induction
to obtain {i0, . . . , im−1} ⊆ n with

Γ〈α∗0, . . . , α∗n−1〉 = Γ⊕
m−1⊕
j=0

⊕
k∈Z

Qsk(α∗ij ).

Then compactness yields a covering of F : Ψn → Γ∞ by finitely many generalized s-functions. It
follows that F is given piecewise by these generalized s-functions. �

One could give a proof without using compactness by doing induction on n and terms and using
[23, Theorem 6.6 and Corollary 6.7] in a fixed model of Tlog.

Lemma 4.18. Let F : Ψm → Γ∞ be a generalized s-function. Then image(F ) ⊆ image(G) ∪ {∞}
for some Ψ-function G : ΨI → Γ.

Corollary 4.19. The image of every definable F : Ψn → Γ is ∞-small.

Note that this corollary gives a direct proof of (9)⇒(5) for φ = ∞ in the Small Sets Theorem.
Next we connect internality to the related model-theoretic notion of being coanalysable relative
to a definable set, from [27]. We follow the presentation of [4]. As for internality, we focus on
coanalysability relative to Ψ∆φ.

Definition. Let X ⊆ Γn be defined by an Llog ∪ {φ, γ}-formula, where γ ∈ Γm. We say that X is
Ψ∆φ-coanalysable if for all extensions (Γ1, ψ1) 4 (Γ2, ψ2) |= ThLlog∪{φ,γ}(Γ, ψ), if the Ψ-set and
the subgroup ∆φ do not grow, then neither does the interpretation of X.

This definition is the relevant specific instance of a general model-theoretic definition, and is justified
by [27, Proposition 2.4], which provides equivalent formulations in that general context; see also
[4, Section 6] for an exposition. What we need here is the following observation.

Remark 4.20. If X ⊆ Γn∞ is definable and Ψ∆φ-internal, then X is Ψ∆φ-coanalysable.

In fact, using the appropriate general definitions, internality always implies coanalysability, but
the converse fails in some settings, including in the differential field T of logarithmic-exponential
transseries, where internality and coanalysability are taken relative to the constant field [4]. Con-
versely, we show that Ψ∆φ-internality and Ψ∆φ-coanalzyability are equivalent in models of Tlog.
For this, we connect Ψ∆φ-coanalysability to dimφ.
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Lemma 4.21. If X ⊆ Γn∞ is definable and Ψ∆φ-coanalysable, then dimφX ≤ 0.

Proof. Since dimφ Ψ∆φ = 0 and dimφ is a dimension function, this is just [1, Corollary 2.9]. �

4.6. Dp-rank. Let X be a definable set and κ a cardinal. Then the dp-rank of X is less than
κ (written dp(X) < κ) if, in every elementary extension (Γ∗, ψ∗) of (Γ, ψ), there does not exist a
collection of formulas (φα(x, yα))α<κ, an array of elements (bα,i)α<κ,i<ω from Γ∗ and a family of
elements (aη)η∈ωκ from X∗ such that

φα(aη, bα,j) ⇐⇒ j = η(i) for all α, j.

The dp-rank of X is equal to κ (written dp(X) = κ) if dp(X) < κ+ but dp(X) 6< κ. We say that X
is dp-finite if dp(X) = n for some n. Note that dp(X) < ℵ0 does not imply dp-finite in general,
as dp(X) may be less than ℵ0 but not less than any n.

Fact 4.22. Let Y be another definable set and let f be a definable function.

(1) If X ⊆ Y , then dp(X) ≤ dp(Y ).
(2) If X,Y are dp-finite, then so is X × Y .
(3) dp(f(X)) ≤ dp(X).
(4) dp(Ψ) = 1.

Proof. (1) and (3) are straightforward and (2) holds by [30]. For (4), we know by Fact 2.6 that Ψ
is stably embedded as a model of Th(N, <), and this theory has dp-rank one [14]. �

Lemma 4.23. Suppose that X ⊆ Γ has nonempty interior. Then dp(X) = ℵ0.

Proof. First, since Tlog is countable and NIP, we have dp(X) < ℵ1; see [30, Remark 2.3]. Since X
has nonempty interior, it contains a coset of ∆φ for some sufficiently large φ ∈ Ψ. By Fact 4.22, it
is enough to show that dp(∆φ) = ℵ0. Arguing as in [26, Theorem 3.6 (8)], one can easily find for
each ε ∈ ∆>

φ an infinite definable discrete subset of (0, ε), so dp(X) 6< ℵ0 by [13, Theorem 2.11]. �

5. D-minimality criterion and applications

In this section, we give a general criterion for when the expansion of a topological theory by a
collection of unary functions is d-minimal. This criterion systematizes a number of earlier results,
dating back to van den Dries’s 1985 proof that the real field with a predicate for the integer powers
of two is d-minimal [15]. Instead of working with the predicate directly, van den Dries instead
considers the real field expanded by the function λ that takes x > 0 to the largest power of two less
than or equal to x. It is shown by a straightforward induction that terms in this extended language
are given locally by semialgebraic functions, off of a finite union of discrete sets. D-minimality
follows from this fact and a quantifier elimination result.

D-minimality for (R, 2Z) was generalized by Miller, who showed that (R̃, αZ) is d-minimal for any

polynomially bounded o-minimal expansion R̃ of the real field with field of exponents Q and any
α > 0 [34]. The general structure of the proof is essentially the same, though some new facts about
valuation theory for o-minimal structures are needed for the quantifier elimination result. This was
further extended by Friedman and Miller, who showed that d-minimality for (R̃, αZ) is preserved
after adding all subsets of all cartesian powers of αZ [22].

This process of describing terms in an expansion locally by functions definable in a base theory
is relatively straightforward over the reals, but takes a bit more care when working over arbitrary
topological structures. Here, we isolate sufficient conditions that allow us to prepare terms in this
way. These “preparations,” made explicit here, were used in [29] to show that the expansion of
a power bounded o-minimal field R by a monomial group M (that is, the image of a section of a
T -convex valuation) is d-minimal.
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Below is a list of structures and theories that can be easily shown to be d-minimal, using our
criterion along with known quantifier elimination results. We note that our criterion does not (to
our knowledge) establish d-minimality in the stronger sense defined by Fornasiero in [20, Definition
9.1]. In particular, we see no way to prove Corollary 3.25 without the Kinda Small and Very Small
Sets Theorems.

(1) Our criterion generalizes the methods used to establish d-minimality for (R, 2Z), (R̃, αZ),
and (R,M) as mentioned above, so these examples fall under our framework.

(2) The field (Qp, p
Z) of p-adics with a predicate for the powers of p. This can be construed

as a two-sorted structure (Qp,Z; v, π), where v : Q×p → Z is the p-adic valuation and where
π : Z → Qp is the cross-section z 7→ pz. Then d-minimality follows from our criterion
below, along with Ax and Kochen’s quantifier elimination [6]. D-minimality was shown by
Scowcroft, also using an induction on complexity of terms [37].

(3) The expansion of an o-minimal structure by an iteration sequence (a predicate for the
iterates of a sufficiently fast-growing definable function). Quantifier elimination and d-
minimality were established by Miller and Tyne [35].

(4) A tame pair of o-minimal fields: an o-minimal field R expanded by a predicate for a proper
elementary substructure A ≺ R that is Dedekind complete in R. Van den Dries and
Lewenberg showed that these expansions eliminate quantifiers when considered with the
standard part map R→ A, which takes x in the convex hull of A to the closest element in
A. D-minimality follows from quantifier elimination and our criterion. To our knowledge,
d-minimality has not been previously observed, though it follows for tame pairs of real
closed ordered fields by d-minimality of the differential field T of logarithmic-exponential
transseries, which is an expansion of such a pair; see [3, Corollary 16.6.11].

(5) D-minimality for Tlog can quickly be established using our criterion and the quantifier
elimination result in [23], as opposed to using the Small Sets Theorem. We describe how in
Subsection 5.2.

(6) In Subsection 5.3, we establish d-minimality for henselian valued fields of residue charac-
teristic zero, equipped with a section of the valuation and a lift of the residue field. This
makes use of the quantifier elimination in [17].

(7) In Subsection 5.4, we show how one can use our criterion to show that (R̃, αZ)#, the

expansion of a polynomially bounded o-minimal expansion R̃ of the real field with field of
exponents Q by all subsets of all cartesian powers of αZ for some α > 0, is d-minimal. As
mentioned above, this was originally shown by Friedman and Miller, albeit by very different
methods [22]. We approach this by showing that the quantifier elimination result of Miller

for (R̃, αZ) can be extended to this expansion by considering this structure as a two-sorted
structure.

5.1. The d-minimality criterion. For the remainder of this section, L is a multi-sorted language
in the sorts S, s ranges over S, M is an L-structure, and T is a complete L-theory.

We also fix a family χ = (χs(xs; ys))s∈S of partitioned L-formulas χs(xs; ys) where xs is a variable
in the sort s, and ys is a multivariable.

Definition 5.1. We say that M is a topological L-structure (with respect to χ) if for each
s ∈ S, the family:

{χs(Ms; a) : a ∈Mys}

is a basis for a topology on Ms. We say that T is a topological L-theory (with respect to χ) if
M is a topological L-structure (with respect to χ) for every model M of T .
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Note that if M is a topological L-structure, then ThL(M) is a topological L-theory. For a tuple
of sorts s, we let Ms denote the corresponding cartesian product. When M is a topological L-
structure, we construe such a cartesian product Ms as a topological space using the topology
generated by the χs and the product topology. If X ⊆Ms is definable, then int(X) and br(X) are
also definable.

For the rest of this section M is a topological L-structure and T is a topological L-theory.

We say that M is T1 at s if the topology on Ms is T1, and we say that T is T1 at s if every model
M of T is T1 at s. Note that if M is T1 at s, then so is ThL(M).

Definition 5.2. Suppose M and T are T1 at s. We say that M is d-minimal at s if every
definable subset of Ms either has interior or is the union of finitely many discrete subsets of Ms.
We say that T is d-minimal at s if M is d-minimal at s for every model M of T .

We fix a distinguished sort s0 ∈ S, and we write M0 in place of Ms0 . We make the following
assumptions on our topological L-theory T :

(I) T is T1 and d-minimal at s0.
(II) For every model M |= T , every s ∈ S and every L-definable function g : M0 →Ms, the set

cl(Discont(g)) is a finite union of discrete sets.

Remark 5.3. By assuming that T (and not just M) is d-minimal at s0, we obtain a uniform
version of (II): For every finite tuple of sorts s, every s ∈ S, and every L-definable function
g : Ms×M0 →Ms, there is N such that cl(Discont(gx)) is a union of N discrete sets for all x ∈Ms.
This uses that being a union of at most N discrete sets is a definable condition; see Remark A.16.

Remark 5.4. Note that (II) does not follow from (I) in general, even though the set of disconti-
nuities is definable. Indeed, Johnson notes that in the real field with the Sorgenfrey (lower limit)
topology, every definable set with empty interior is finite, but x 7→ −x is nowhere continuous [28,
Remark 1.16].

Consider L(F) := L ∪ F, where F is a set of new unary function symbols. Let T (F) be a complete
L(F)-theory extending T . Given M |= T we denote by (M ,F) an expansion of M to a model of
T (F).

Proposition 5.5 (d-minimality criterion). Suppose the following conditions hold:

(A) For every L(F)-formula ϕ(t) where t is a unary variable in the sort s0, there exist an
L-formula ϕ∗(x1, . . . , xn) and L(F)-terms τ1(t), . . . , τn(t) such that:

T (F) ` ϕ(t)↔ ϕ∗(τ1(t), . . . , τn(t)).

(B) Every new function symbol f : Ms′ → Ms in F is locally constant off of a finite union of
strongly discrete sets; see Definition A.7.

Then T (F) is d-minimal at s0.

Our criterion for d-minimality ensures that L(F)-terms are given locally by L-definable functions
off of a finite union of discrete sets. The following definition makes this more precise:

Definition 5.6. Suppose τ : M0 →Ms is an L(F)-term, with s ∈ S. We define a preparation of
τ to be a triple (s, B, f) consisting of a finite tuple of sorts s, an L(F)-definable set B ⊆Ms×M0,
and an L-definable function f : Ms ×M0 →Ms such that:

(1) Bx is an open subset of M0 for each x ∈Ms and Bx ∩Bx′ = ∅ for x 6= x′,
(2) M0 \

⋃
xBx is a finite union of discrete sets,

(3) τ(t) = fx(t) for each x and for all t ∈ Bx.

Moreover, if a preparation (s, B, f) of τ additionally satisfies:
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(4) fx|Bx : Bx →Ms is continuous for each x,

then we say that (s, B, f) is a continuous preparation of τ .

Lemma 5.7. Let τ : M0 → Ms be an L(F)-term. If τ has a preparation, then τ has a continuous
preparation.

Proof. Let (s, B, f) be a preparation of τ . For each x define Dx := cl(Discont(fx|Bx)). Then there
is N ∈ N such that Dx ⊆ Bx is a union of N discrete sets for each x. It follows from Lemma A.6
that D :=

⋃
xDx is a union of N discrete sets. Next, define B∗ ⊆ B by declaring for each x ∈Ms:

B∗x := Bx \Dx = Bx \D.

We claim that (s, B∗, f) is a continuous preparation. The definition of B∗x ensures that (3) and (4)
are satisfied. Since each Dx is closed, it follows that B∗x is open, which is (1). Finally, for (2) note
that:

M0 \
⋃
xB
∗
x = (M0 \

⋃
xBx) ∪D,

which is a finite union of discrete sets. �

Lemma 5.8. If τ is a variable, then (∅,M0, τ) is a continuous preparation of τ , where ∅ is the
empty tuple of sorts.

Lemma 5.9. Let s = (s1, . . . , sn) be a tuple from S, let s ∈ S, let σ : Ms → Ms be an L-term
and let τi : M0 →Msi be an L(F)-term for each i = 1, . . . , n. If each τi has a preparation, then the
L(F)-term τ := σ(τ1, . . . , τn) has a preparation.

Proof. For each i = 1, . . . , n, let (si, Bi, gi) be a preparation of τi. Next, set s̄ = (s1, . . . , sn) and
define B ⊆Ms̄×M0 and g : Ms̄×M0 →Ms by declaring for all x = (x1, . . . , xn) ∈Ms1×· · ·×Msn :

Bx := B1,x1 ∩ · · · ∩Bn,xn , g(x, t) := σ(g1(x1, t), . . . , gn(xn, t)).

We claim that (s̄, B, g) is a preparation of τ . Conditions (1) and (3) are clear. For (2), note that:

M0 \ (
⋃
xBx) =

⋃
1≤i≤n(M0 \

⋃
xi
Bi,xi),

which is a finite union of discrete sets. �

Lemma 5.10. Suppose τ = f(σ) for some L(F)-term σ : M0 → Ms′ and some f : Ms′ → Ms in F.
Suppose also that:

(1) σ has a preparation, and
(2) f is locally constant off of a finite union of strongly discrete sets.

Then τ has a preparation.

Proof. Let (s, C, h) be a preparation of σ, which by Lemma 5.7 we may assume to be continuous.
Define B ⊆Ms ×Ms ×M0 by:

Bx,y := int{t ∈ Cx : f(hx(t)) = y} ⊆ Cx

and define f : Ms ×Ms ×M0 →Ms by:

f(x, y, t) := y.

We claim that ((s, s), B, f) is a preparation of τ .
(1) By definition, each Bx,y is open. Next suppose t ∈ Bx,y ∩Bx′,y′ . Then t ∈ Cx ∩Cx′ , and thus

x = x′ since (s, C, h) is a preparation. By definition of Bx,y, we have y = f(hx(t)) = y′.
(2) As T is d-minimal at s0, we find N ∈ N such that br(h−1

x (z)) is a union of N discrete sets
for each (x, z) ∈Ms ×Ms′ . Then Proposition A.19 gives N ′ ∈ N such that Cx \

⋃
y Bx,y is a union
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of N ′ discrete sets. Thus by Lemma A.6 we have that
⋃
x(Cx \

⋃
y Bx,y) is a union of N ′ discrete

sets as well. It follows that

M0 \
⋃
x,y Bx,y = (M0 \

⋃
xCx) ∪

⋃
x(Cx \

⋃
y Bx,y)

is a finite union of discrete sets.
(3) Let x, y and t ∈ Bx,y be arbitrary. Using that (s, C, h) is a preparation for σ and t ∈ Bx,y ⊆

Cx, we see that

τ(t) = f(σ(t)) = f(h(x, t)) = y = fx,y(t). �

Corollary 5.11. If each f ∈ F is locally constant off of a finite union of strongly discrete sets, then
every L(F)-term has a (continuous) preparation.

We can now put together the material on preparations to prove Proposition 5.5.

Proof of Proposition 5.5. Let D ⊆M0 be L(F)-definable. By removing the interior of D (which is
open and L(F)-definable), we may assume that D has empty interior. We will show that D is a
finite union of discrete sets. By (A), there exist an n-ary L-definable relation R(x1, . . . , xn) and
L(F)-terms τ1(t), . . . , τn(t) such that D is of the form:

D = {t ∈M0 : R(τ1(t), . . . , τn(t))}.

Next, for i = 1, . . . , n, by (B) and Corollary 5.11 we take preparations (si, Bi, fi) of each term τi.
Set s̄ := (s1, . . . , sn) and define B ⊆Ms̄×M0 by declaring for x = (x1, . . . , xn) ∈Ms1 × · · ·×Msn :

Bx := B1,x1 ∩ · · · ∩Bn,xn ⊆M0.

Then each Bx is open and

M0 \
⋃
xBx =

⋃
1≤i≤n(M0 \

⋃
xi∈Msi

(Bi)xi)

is a finite union of L(F)-definable discrete sets. We have

D ∩Bx = {t ∈ Bx : Ri
(
f0(x0, t), . . . , fn−1(xn−1, t)

)
}

= Bx ∩ {t ∈M0 : Ri
(
f0(x0, t), . . . , fn−1(xn−1, t)

)
}︸ ︷︷ ︸

=:Cx

.

Suppose z ∈ int(Cx), so there is an open U such that z ∈ U ⊆ Cx. Since D ∩ Bx does not have
interior, it must be the case that U ∩ Bx = ∅ (since Bx is open), thus z 6∈ D ∩ Bx. In particular,
D ∩ Bx = Bx ∩ br(Cx). By our assumption that T is d-minimal at s0, br(Cx) is a union of N
discrete sets, for some N ∈ N not depending on x, so D ∩Bx is a union of N discrete sets.

By Lemma A.6, the set D ∩
⋃
x∈Ms̄

Bx is a union of N discrete sets. Finally,

D = (D ∩
⋃
x∈Ms̄

Bx) ∪ (D ∩ (M0 \
⋃
x∈Ms̄

Bx))

is a finite union of discrete sets. �

5.2. Asymptotic couple. Here, we describe how our d-minimality criterion can be used to quickly
show that Tlog is d-minimal. Let (Γ, ψ) |= Tlog. We take as a base theory T the theory of divisible
ordered abelian groups with an infinite element, construed in the language

L := {0,∞,+,−, <, δ1, δ2, δ3, . . .}.

Then T is o-minimal, so assumptions (I) and (II) hold. Moreover Llog = L∪ {ψ, s, p}, so Tlog is an
Llog-theory with quantifier elimination and a universal axiomatization. In particular, Tlog satisfies
condition (A) of Proposition 5.5. Lemma 2.8 gives that ψ, s, and p are all locally constant off of a
discrete set (indeed, a strongly discrete set; see Lemma A.8), so condition (B) holds as well.
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Remark 5.12. Using Corollary 5.11, one can easily prove the unary version of Corollary 3.17.
That is, one can show that any definable function f : Γ→ Γ∞ is locally linear off of a finite union
of discrete sets.

5.3. Valued fields. Let K be a field and let v be a henselian valuation on K of residue charac-
teristic zero. We let K be the three-sorted structure (K,k,Γ; v, res), where v : K× → Γ and the
residue map res : K → k are assumed to be surjective (and where the residue map sends everything
with negative valuation to 0). We let L be the natural language of this three-sorted structure,
but Morleyized on the sorts k and Γ (so L also includes an additional relation symbol for every
∅-definable subset of any cartesian power of k or Γ).

We view K as a topological L-structure, where the sort K is equipped with the valuation topology
and the sorts Γ and k are equipped with the discrete topology. We let T be the L-theory of K.
Then T is a topological L-theory with quantifier elimination. The models of T are precisely those
henselian valued fields with residue field elementarily equivalent to k and value group elementarily
equivalent to Γ.

Proposition 5.13. The theory T satisfies assumptions (I) and (II), where the distinguished sort
is the home sort.

Proof. The valuation topology on K is T1, and by [19, Proposition 5.1], every definable subset of K
either has interior or is finite. For (II), Theorem 5.1.1 in [12] gives that every L-definable function
K → K is continuous on a dense open (hence cofinite) set. To verify that (II) holds for L-definable
functions g : K → k, we fix such a g and consider the L-formula φ(x, y) defining g, so x is a variable

of sort K and y is a variable of sort k. Let L̃ be the language containing sorts for k and Γ (as a
field and an ordered abelian group, both Morleyized as above) together with a sort k/(k×)n and
a corresponding quotient map πn : k → k/(k×)n for each n > 1. By [2, Theorem 5.15], φ(x, y) is

equivalent to a formula ψ(σ1(x), . . . , σm(x), y) where ψ is an L̃-formula and each σi is of the form
vP (x), res(P (x)/Q(x)), or resn(P (x)), where P,Q ∈ K[X] and where resn : K → k/(k×)n is the
map

resn(a) :=

{
0 if va 6∈ nΓ,

πn ◦ res(a/bn) if va = nvb (this does not depend on choice of b).

Since v, res, and the maps resn are locally constant away from 0, each σi is locally constant off of
a finite set. It follows that g is also locally constant (in particular, continuous) off of a finite set.
The same argument works for L-definable functions h : K → Γ. �

We now extend L to L∗ := L ∪ {s, `} and T to an L∗-theory T ∗ with axioms stating that s is a
section of the valuation and ` is a lift of the residue field. Note that not every model of T admits an
expansion to a model of T ∗, but if K |= T is ℵ1-saturated, then K does admit such an expansion.

Corollary 5.14. T ∗ is d-minimal (on the home sort).

Proof. As a consequence of van den Dries’s AKE theorem with lift and section [17, Section 5.3],
the theory T ∗ eliminates quantifiers in the language L∗; see also [32, Theorem 2.2]. Condition
(A) of Proposition 5.5 follows. For condition (B), we note that both s and ` are locally constant
everywhere, since Γ and k have the discrete topology. �

5.4. The structure (R̃, αZ)#. Let R̃ be a polynomially bounded expansion of the reals with field
of exponents Q, and let α > 1.

It is easy to see how our criterion can be used to show that (R̃, αZ) is d-minimal (using the quantifier

elimination result of Miller–van den Dries). Less easy is to see how d-minimality of (R̃, αZ)#, the

expansion of R̃ by all subsets of all cartesian powers of αZ, follows from our criterion, as the criterion
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only allows for new functions, not new predicates. In this subsection, we show how the multi-sorted
setup can be used as a workaround.

Let (R̃,Z#) be a 2-sorted structure with underlying sets R and Z. We construe this structure in
the language L that contains:

(1) For each n, a function symbol for each function Rn → R that is definable without parameters

in R̃;
(2) the language of ordered abelian groups {0,+, <} on Z, along with a relation symbol for

each subset of Zn.

Then (R̃,Z#) eliminates quantifiers in L and any substructure of R̃ is an elementary substructure.

Now expand (R̃,Z#) by the map λ : R> → Z sending r ∈ R> to the least z ∈ Z with αz ≤ r < αz+1.
We extend λ to all of R by defining λ(r) := 0 for r ≤ 0. Let L∗ := L ∪ {λ}. Note that λ is locally
constant off of the set {0} ∪ αZ, which is a union of two strongly discrete sets. Thus, to prove

d-minimality, it is enough to show that (R̃,Z#;λ) has QE. This can be shown via a saturated
embedding test, following the proof sketch given in [34, Section 8.6].

6. Final comments

6.1. The reader may have noticed that the pregeometries clφ are reminiscent of the so-called small
closure for lovely pairs [8, Definition 4.5] and dense pairs [20, Definition 8.27]. We are unaware
of any existing generalized pair framework that fits our situation exactly, although the following
observations are in order:

• (Γ,Ψ) is a proper reduct of (Γ, ψ): using the embedding lemma [23, 4.6] one can change
the ψ-value of a suitable archimedean class without changing the underlying Ψ-set.
• Ψ is a predicate that names an indiscernible sequence over Γ (in the language of ordered

abelian groups with ∞); thus (Γ,Ψ) (and so definable sets of ∞-dimension zero, by Re-
mark 3.23) may be further analyzed in the tradition of [7].
• (Γ, χ) is a proper reduct of (Γ, ψ), where χ(α) :=

∫
ψ(α) for α 6= 0 is the contraction map

induced by the logarithm; this is proved in [24, Section 7.3].
• (Γ, χ,Ψ) is interdefinable with (Γ, ψ): given α ∈ Γ 6=, we may define ψ(α) to be the unique
φ ∈ Ψ such that φ − sφ = χ(α); here we use the restriction s : Ψ → Ψ of the successor
function, which is definable in the reduct.
• We conjecture that χ (and thus ψ) is not definable in any monadic expansion of Γ.

6.2. The reader may have also noticed that for definable sets X ⊆ Γn with dim∞(X) ≤ 0 (i.e.,
the “∞-very small sets”) there are additional invariants available for a finer analysis. We record a
few of them here:

• the least m such that X is a union of m discrete sets;
• the least m such that X(m) = ∅;
• the least m such that X can be covered by finitely many affine maps of the form Ψm → Γn;
• the least m such that there exists a definable surjection Ψm → X;
• the dp-rank of X;
• when (Γ, ψ) is the standard model, we may associate to X the (growth rate of the) function
N → N : k 7→ |πsk0(X)|, which we conjecture is always eventually equal to a polynomial
with rational coefficients. For example, with the X ⊆ Γ described in the beginning of
Subsection 3.3, we have |πsk0(X)| =

(
k−1

2

)
+
(
k−1

1

)
+
(
k−1

0

)
= 1

2k
2 − 1

2k + 1.

We make no general claims about these invariants, although some basic relations between these
quantities can be read off from our results in Section 4.
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6.3. Finally, we address some possible extensions and limitations of this work, in particular as it
compares to analogous results for (the asymptotic couple of) the differential field T of logarithmic-
exponential transseries by Aschenbrenner, van den Dries, and van der Hoeven. Note that their
main [5, Theorem 0.1] can be viewed as a “Small Sets Theorem” for that setting.

It is clear that (Γlog, ψ) is part of Teq
log. However, the induced structure on Γlog is more than that of

the 1-sorted asymptotic couple (Γlog, ψ). In fact, the following binary map is also definable in Teq
log:

sc : R× Γlog → Γlog, sc(r, γ) = rγ

and consequently we also should consider the 2-sorted strict expansion ΓTlog
= ((Γlog, ψ),R; sc);

this is for the same reason as given in [5], namely that the constant power “map” on Tlog induces a
scalar multiplication by the constant/residue field R on the value group Γlog. Of course, the 2-sorted
setting introduces new types of discrete sets that are not captured by the Small Sets Theorem, such
as Rs0 := sc(R, s0), but we expect them to be “orthogonal” to the discrete set Ψ in a relevant sense.

As in [5], we also know that for nonzero differential polynomials G(Y ) ∈ Tlog{Y } the subset

{vy : y ∈ T×log : G(y) = 0} of Γlog is discrete since [3, Corollaries 14.3.10, 14.3.11] also apply to Tlog.

For example, the differential polynomial G(Y ) = x(Y Y ′′− (Y ′)2) +Y Y ′ yields the discrete set Rs0
in Γlog; this is because the nonzero zeros of G(Y ) satisfy (xY †)′ = 0, i.e., Y † ∈ Rx−1. Conversely,

certain discrete sets like Ψ cannot occur of the form “v(Z(G)6=)” by [3, Corollary 13.4.5].

We do not know whether ΓTlog
is purely stably embedded in Teq

log: a positive answer would require

an elimination theory for Tlog, and a negative answer would require a counterexample. This was
answered in the negative for T in [5, p. 532]. However, their counterexample produces an injection

c 7→ [v(ee
cx

)] : R> → [Γ6=T ] into the archimedean classes of ΓT; such a phenomenon is impossible in

our setting since [Γ6=log] ∼= Ψ is countable.

Appendix A. Topology

Our main theorems concern the agreement (or disagreement) of various ideals of definable sets. In
this appendix, we recall some basic facts we need about those ideals that arise from topology. In
particular, we observe that under mild topological assumptions (e.g., if X is T1 with no isolated
points), we get a linear inclusion of ideals:

finite ⊆ d-finite ⊆ finite unions of discrete sets ⊆ nowhere dense

(See Lemmas A.13, and A.5.) Furthermore, in Subsection A.6 we establish Proposition A.19, which
is needed for the d-minimality criterion 5.5.

Throughout, X and Y are topological spaces and we let A,B range over subsets of X.

A.1. Preliminaries. We denote the interior and closure of A in X by int(X) and cl(X). We
may use subscripts if we want to emphasize the ambient space. For example:

Lemma A.1. If f : X → Y is continuous, then for any A ⊆ X we have clX(A) ⊆ f−1(clY (f(A))),
equivalently, f(clX(A)) ⊆ clY (f(A)).

We occasionally make the following assumptions about our topological space:

Definition A.2. We say that X is T1 if every singleton is closed, and we say that X has no
isolated points if every singleton is not open.
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A.2. Sets with empty interior. We say a set A has empty interior in X if intX(A) = ∅. When
the ambient space X is understood from context, we just say A has empty interior. Conversely,
we say A has interior if A does not have empty interior.

The sets with empty interior in general do not form an ideal; moreover, the ideal that they generate
is often the improper ideal (e.g., consider Q and R \Q in R with the usual topology.)

A.3. The ideal of nowhere dense sets. We say A is nowhere dense in X if intX(clX(A)) = ∅.
When the ambient space X is understood from context, we just say A is nowhere dense.

The nowhere dense subsets of X form an ideal of subsets of X, which is closed under taking closures:

Lemma A.3 (Nowhere dense sets form an ideal).

(1) A finite union of nowhere dense sets is nowhere dense.
(2) If A ⊆ B and B is nowhere dense, then A is nowhere dense.
(3) A is nowhere dense iff cl(A) is nowhere dense.

The following is obvious:

Lemma A.4. If A is nowhere dense, then A has empty interior.

A.4. The ideal generated by discrete sets. Recall that a set A is discrete (in X) if A is a
discrete space when equipped with the subspace topology.

In general, the discrete subsets of X do not form an ideal (consider {0} ∪ {1/n : n ≥ 1} in R with
the usual topology), although really we are interested in the ideal generated by the discrete sets,
i.e., the sets that are finite unions of discrete sets.

We first observe that under mild topological assumptions, the ideal generated by discrete sets is
sandwiched between the ideal of finite sets and the ideal of nowhere dense sets:

Lemma A.5. Suppose X is T1 and has no isolated points. Then for every D ⊆ X we have:

D is finite ⇒ D is discrete ⇒ D is nowhere dense.

Proof. The first implication is immediate from T1. Now assume D is discrete and assume towards
a contradiction that int(cl(D)) 6= ∅. Then there exists a nonempty open set U ⊆ cl(D). Note that
U ∩D 6= ∅ and fix d ∈ U ∩D. Since D is discrete, we can choose an open set V ⊆ U such that
V ∩D = {d}. Next, next note that W := V \ {d} is open (by T1) and nonempty (since X has no
isolated points). Moreover, we have W ⊆ cl(D), however W ∩D = ∅, a contradiction. �

In general both directions⇐ can fail. Indeed, the second is the distinction between the Very Small
Sets and the Kinda Small Sets when n > 1.

Sets in the ideal generated by discrete sets can be glued together in the following obvious way:

Lemma A.6. Suppose:

(1) (Bi)i∈I is a disjoint family of open sets,
(2) (Di)i∈I is a family with Di ⊆ Bi for each i ∈ I,
(3) there is N ∈ N such that each Di is a union of N discrete sets.

Then
⊔
i∈I Di is a union of N discrete sets.

When applying this lemma, the following concept is useful:

Definition A.7. We say a set D ⊆ X is strongly discrete if there exists a family (Vd)d∈D of
pairwise disjoint open sets such that Vd ∩D = {d} for each d ∈ D.

In many topological spaces of interest, we get strongly discrete for free:
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Lemma A.8. Suppose X is either (i) a metric space equipped with the metric topology, or (ii) a
valued abelian group equipped with the valuation topology. Then for every D ⊆ X we have: D is
discrete iff D is strongly discrete.

Note the above lemma can fail, even for hausdorff spaces. Indeed, in the Niemytzki’s tangent disk
topology [38, II.82] on X = R× [0,+∞) the axis R× {0} is discrete but not strongly discrete.

A.5. The ideal of d-finite sets. Given x ∈ X we say that x is a limit point of A (in X) if for
every neighbourhood U of x:

(U \ {x}) ∩A 6= ∅.
Define the derived set of A (in X) to be:

A′ := {x ∈ X : x is a limit point of A}.
Note that the derived set A′ of A depends on the ambient space X. For n ≥ 0 we define A(n)

recursively by setting A(0) := A and A(n+1) := (A(n))′.

Here are some basic facts about derived sets:

Lemma A.9. Given A,B and a finite family (Ai)i∈I of subsets of X we have for every n ≥ 0:

(1) (
⋃
i∈I Ai)

(n) =
⋃
i∈I A

(n)
i .

(2) A(n) ⊆ A ∪A′ = cl(A); in particular, cl(A)(n) = A(n) ∪A(n+1) = cl(A(n)).

(3) If A ⊆ B, then A(n) ⊆ B(n).
(4) A is discrete and closed if and only if A′ = ∅.

In particular, if A is closed, then (A(n))n≥0 is a decreasing sequence of closed sets. Moreover, if

X is T1, then A′ = cl(A)′, hence (A(n))n≥1 is a decreasing sequence of closed sets. However, this
behavior need not be typical in general:

Example A.10. Suppose X = {a, b} with the indiscrete topology. Then for A = {a} we have:

A(n) :=

{
{a} if n even,

{b} if n odd.

Thus in general A(n) need not be closed, the sequence (A(n))n≥0 need not be eventually decreasing,

and cl(A)(n) need not equal A(n).

We introduce the following terminology:

Definition A.11. We say that A is d-finite in X if A(n) = ∅ for some n ≥ 0. When the ambient
space X is understood from context, we just say A is d-finite.

The d-finite subsets of X form an ideal of subsets of X, which is closed under taking closures:

Lemma A.12 (d-finite sets form an ideal). For every A,B we have:

(1) A finite union of d-finite sets is d-finite.
(2) If A ⊆ B and B is d-finite, then A is d-finite.
(3) A is d-finite iff cl(A) is d-finite.

Proof. (1) follows from A.9(1), (2) follows from A.9(3), and (3) follows from A.9(2). �

The ideal of d-finite sets is always contained in the ideal generated by discrete sets:

Lemma A.13. For every A, the difference A \ A′ is discrete; hence, if A is d-finite, then A is a
finite union of discrete sets.

In general the converse can fail in a T1 space:
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Example A.14. Consider the ordinal X := ω1 equipped with the order topology, and the subset
D := {α+ 1 : α ∈ ω1} ⊆ X of successor ordinals. Then D is discrete, although D is not d-finite.

Here is a T1 example without any isolated points:

Example A.15. Consider the product X = R× R. Equip each point (r, 0) with the usual neigh-
bourhood basis inherited from the standard topology on R2. Equip each point (r, x) with x 6= 0
with the neighbourhood basis of vertical intervals of the form {(r, t) : x − ε < t < x + ε}, where

0 < ε < |x|. Consider the set D := R×{1/n : n > 0}. Then D is discrete, although D(n) = R×{0}
for every n ≥ 1. Thus D is not d-finite.

Remark A.16 (Relation to Cantor–Bendixson derivative). The Cantor–Bendixson (CB) derivative
is initially defined for topological spaces X as dCB(X) := X ′ as in [31, (6.10)], although one often
extends this definition to arbitrary subsets A ⊆ X via dCB(A) := A \ isol(A) (as done in [21, 3.28]
for hausdorff spaces), where isol(A) is the set of isolated points of A in the subspace topology
induced by X. In a T1-space, we have dnCB(A) = ∅ if and only if A is a union of at most n discrete
sets, which shows that this property is definable in families; see [21, 3.29].

Following the terminology from [31], we say thatA has finite CB-rank if the sequence (dnCB(A))n≥0

is eventually constant, in which case we call the eventual value the perfect kernel of A. It then
follows that the property “A is d-finite” is equivalent to “cl(A) has finite CB-rank with empty
perfect kernel”. Note that if A is d-finite, then A has finite CB-rank (with empty perfect kernel),
although the converse need not hold as shown in Examples A.14 and A.15. We could not find an
existing name for the property d-finite in the literature.

The following implies that the product of d-finite sets is again d-finite in the product topology:

Lemma A.17. Suppose A ⊆ X and C ⊆ Y are closed. For k ∈ N, we have

(A× C)(k) =
⋃
m+n=k(A

(m) × C(n)),

where A×C is considered as a subset of the product space X×Y . In particular, if A(m) = C(n) = ∅
for some m,n ∈ N with m+ n > 0, then (A× C)(m+n−1) = ∅.

Proof. The k = 1 case (A × C)′ = (A′ × C) ∪ (A × C ′) is routine. The general case follows by
induction on k. �

A.6. Border and locally constant functions. Given a set A ⊆ X, we let brA := A\intA denote
the border of A. The border of A should not be confused with the boundary of A (= cl(A)\ int(A))
or the frontier of A (= cl(A) \A); we do not use boundary or frontier in this paper.

We mainly use border to detect where a function is (not) locally constant: Suppose f : Y → Z is
an arbitrary function. Then we have:

{y ∈ Y : f is locally constant at y} =
⊔
z∈Z int f−1(z),

which is always an open set; we also have:

{y ∈ Y : f is not locally constant at y} =
⊔
z∈Z br f−1(z),

which is always a closed set, being the complement of the first set.

We conclude with Proposition A.19 below, which is a technical membership criterion for this ideal
that we use in the proof of Proposition 5.5. First a lemma:

Lemma A.18. Suppose h : X → Y is continuous and D ⊆ Y is arbitrary. Then:

inth−1D ⊇
⊔
d∈D inth−1(d) and thus brh−1D ⊆

⊔
d∈D brh−1(d).

Proof. For d ∈ D we have h−1(d) ⊆ h−1(D), thus inth−1(d) ⊆ inth−1(D), which yields the first
inclusion. The second inclusion follows from taking complements inside h−1(D). �
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Proposition A.19. Let h : X → Y be a continuous function, and f : Y → Z be a function. Suppose:

(1) f : Y → Z is locally constant outside a union of M strongly discrete sets, and
(2) there is N ∈ N such that brh−1(y) is a union of N discrete sets for every y ∈ Y .

Then
X \

⊔
z intXz =

⊔
z brXz

is the union of MN discrete sets, where Xz := h−1f−1(z), i.e., the composition f ◦ h : X → Z is
locally constant outside a union of MN discrete sets.

Proof. Set D :=
⊔
z∈Z br(f−1(z)). By assumption, we may take a partition (Di)1≤i≤M of D into M

strongly discrete sets Di.
For z ∈ Z define Uz := int f−1(z) and Dz := br f−1(z). Note that our assumption on f says that

D =
⊔
zDz, and hence each Dz is a union of the M discrete sets Di

z := Dz∩Di where i = 1, . . . ,M ;
hence Di =

⊔
z∈Z D

i
z. Thus we have a partition:

f−1(z) = Uz tDz = Uz t
⊔M
i=1D

i
z.

Pulling this back along the continuous function h : X → Y yields:

Xz = h−1f−1(z) = h−1(Uz) t
⊔M
i=1 h

−1(Di
z) = h−1(Uz) t

⊔M
i=1 inth−1(Di

z)︸ ︷︷ ︸
open

t
⊔M
i=1 brh−1(Di

z).

Hence we have brXz ⊆
⊔M
i=1 brh−1(Di

z) ⊆ Dz for each z ∈ Z. Thus by Lemma A.18 we have:⊔
z brXz ⊆

⊔
z∈Z

⊔M
i=1 brh−1(Di

z) =
⊔
z∈Z

⊔M
i=1

⊔
d∈Diz brh−1(d) =

⊔M
i=1

⊔
d∈Di brh−1(d).

It suffices to show for each i that
⊔
d∈Di brh−1(d) is a finite union of N discrete sets. Take for each

d ∈ Di an open Vd ⊆ Y such that Vd ∩Di = {d}; moreover, since Di is strongly discrete, we may
assume that the family (Vd)d∈Di is pairwise disjoint. Then (h−1Vd)d∈Di is a disjoint family of open
sets with brh−1(d) ⊆ h−1Vd for each d ∈ Di, so

⊔
d∈Di brh−1(d) is a union of N discrete sets by

Lemma A.6. �
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