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Abstract. We compare Fornasiero and Terzo’s framework of generic derivations on algebraically bounded
structures with León Sánchez and Tressl’s differentially large fields. We show in the case of a single derivation

that genericity and differential largeness coincide for éz-fields, as introduced by Walsberg and Ye. We also
show that an NTP2 algebraically bounded structure remains NTP2 after expanding by a generic derivation.

1. Introduction

In this note, L is a language extending Lring = {0, 1,+, ·}, and K is an L-structure expanding a field of
characteristic zero. We let n,m, k, r range over N = {0, 1, 2, . . .}. Let dim denote algebraic dimension on
subsets of cartesian powers of K, so dimX is the dimension of the Zariski closure of X ⊆ Kn.

The last few years have seen new approaches to the model theory of “tame” differential fields, often under
the guiding principle: “The model theory of a differential field is completely determined by the model theory
of the underlying field, so long as the derivation is generic.” Genericity roughly means that anything that
can happen, subject to the constraints imposed by differential algebra and the theory of the underlying field,
does happen.

One recent approach is due to Fornasiero and Terzo [8], who axiomatized what it means for a derivation
on an algebraically bounded expansion of a field to be generic. The structure K is algebraically bounded
if for all elementary extensions K∗ <L K, all B ⊆ K∗, and all a ∈ K∗, we have

a ∈ aclL(K ∪B) ⇐⇒ trdeg(a|K(B)) = 0.

Many tame classes of fields are known to be algebraically bounded, including real closed fields, algebraically
closed fields, and henselian fields of characteristic zero. If K is algebraically bounded, then dim is a definable
dimension on K, meaning that for any definable family (Xa)a∈A and any d, the set of a ∈ A for which
dim(Xa) = d is definable. Algebraic boundedness was introduced by van den Dries [23], and the equivalence
of van den Dries’ definition with the one given here is [13, Lemma 2.12].

Let δ be a derivation on K. Fornasiero and Terzo define genericity as follows:

Definition 1.1 (Genericity). The derivation δ is generic if for all L(K)-definable X ⊆ K1+r, if the
projection of X onto the first r coordinates has dimension r, then there is a ∈ K with (a, δa, . . . , δra) ∈ X.

When K is algebraically bounded, genericity is first-order axiomatizable. Fornasiero and Terzo go on
to show that if K is algebraically bounded and δ is generic, then several model-theoretic properties of K
transfer to (K, δ), including quantifier elimination and model completeness.

Another recent research program, initiated by León Sánchez and Tressl, is the study of differentially large
fields [17]. These fields serve as a differential analog of the large fields of Pop; see [21]. Unlike the setting
of algebraically bounded structures with generic derivations, differential largeness is defined only for pure
differential fields (that is, when L = Lring).

Definition 1.2 (Differential largeness). The underlying differential field (K, δ) is differentially large if

(1) K is large as a field, and
(2) for every differential field extension (L, δ) ⊇ (K, δ), if K is existentially closed in L as a field, then

(K, δ) is existentially closed in (L, δ) as a differential field.

What is the relationship between these two notions? We note that there are large, non-algebraically
bounded fields [6, Example 10], as well as algebraically bounded, non-large fields [14, Example 4.30]. Using
the characterization of differential largeness provided in [18], it is not difficult to show that if the underlying
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field K is large and δ is generic, then the underlying differential field (K, δ) is differentially large; see
Corollary 2.4. As for the converse, an obvious obstruction occurs in the case that there are L-definable
subsets of K that are not definable in the Lring-language, as the axiom of differential largeness can’t assert
anything about these sets. Here is a concrete example:

Example 1.3. Let (K, δ) be a differentially closed field and let C := ker(δ) be the constant field of K.
Let t ∈ K be transcendental over C and consider the subfield C(t) of K. Let Ot ⊆ C(t) be the t-adic
valuation ring on C(t), and let O ⊆ K be a valuation ring lying over Ot (we can even find O with residue
field isomorphic to C; see [11, Chapter V, Theorem 9]). Then (K,O) is an algebraically closed nontrivially
valued field. Let L = Lring ∪ {O} be the language of valued fields, so (K,O) is algebraically bounded as an
L-structure. Let m be the maximal ideal of O. Then dim(m) = 1, but there is no a ∈ m with δa = 0, since
C ⊆ O× = O \m. Thus, δ is not generic.

In light of this example, a converse only becomes plausible if we assume that K is a large field with no
additional structure.

Question. Suppose that L = Lring. If (K, δ) is differentially large, then is δ generic?

It seems difficult to answer this question without some understanding of the definable sets in K. In
Proposition 2.3 below, we give a “topological” axiomatization of differential largeness in terms of the étale
open topology of Johnson, Tran, Walsberg, and Ye [12]. In [24], Walsberg and Ye isolated the class of
éz-fields—large, algebraically bounded fields that are “topologically tame” with respect to this topology.
For these fields, we have a good enough understanding of definable sets to answer the question positively.

Theorem A (Corollaries 2.4 and 2.5). Suppose that L = Lring and that K is an éz-field. Then δ is generic
if and only if (K, δ) is differentially large.

Theorem A was known in the case that K is large and model complete (possibly after adding constants),
as an easy consequence of [17, Proposition 4.8]. This in turn uses that differentially large fields can be
axiomatized via Tressl’s “uniform companion” [22]. These fields, along with many others (including henselian
fields of characteristic zero and perfect Frobenius fields), are all éz [24, Theorem C].

In the second part of this note, we focus on model-theoretic transfer theorems for algebraically bounded
structures with generic derivations. Suppose that K is algebraically bounded and let T be the L-theory
of K. Let P := dclL(∅) and fix a derivation δP on P (one could, for instance, take δP to be the zero
derivation; when P is algebraic over Q, this is the only possibility). Let Lδ = L ∪ {δ}, let T δ = T +
“δ is a derivation extending δP”, and let T δg = T δ+“δ is generic”. We include a list of previously established
transfer theorems below.

Fact 1.4.

(1) T δg is consistent and complete.

(2) For every Lδ-formula ϕ(x) (x is a tuple of variables), there is an L-formula ψ(x0, . . . , xr) such that

T δg |= ∀x(ϕ(x)↔ ψ(x, δx, . . . , δrx)).

(3) If T is model complete, then T δg is the model companion of T δ.

(4) If T eliminates quantifiers, then so does T δg .

(5) If T is stable, then so is T δg .

(6) If T has NIP, then so does T δg .

(7) If T is distal, then so is T δg .

(8) If T is simple, then so is T δg .

(9) If T δg eliminates imaginaries, then it is rosy.

(10) If T has NSOP1, then so does T δg .

The first nine parts of Fact 1.4 were shown by Fornasiero and Terzo; see [8] for (1)–(6) and [9] for (7)–
(9). Part (10), as well as independent proofs of (5), (8), and (9), can be established using León Sánchez
and Mohamed’s framework of derivation-like theories [16]. Transfers of neostability properties defined in
terms of sequences, like (5)–(7), can be established quite easily using (2); see [3, Proposition 7.1] and [8,
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Theorem 6.2] for general criteria, as well as the proofs in [5, 7]. For properties that can be defined in terms
of independence relations like (8)–(10), one shows that an independence relation on T can be used to define
one on T δg satisfying the same properties; see [8, 16]. A third class of model-theoretic properties consists of
tree properties, which are defined by consistency-inconsistency patterns. As far as we are aware, the only
transfer result for these types of properties without using independence relations is due to Point [20], who
shows that NTP2 transfers for certain classes of topological fields with generic derivations [10]. We generalize
this to all algebraically bounded fields. Our method relies on certain facts about NTP2-theories, such as
Chernikov’s one-variable theorem, but is general enough to be applied to other tree properties, such as the
antichain tree property [2].

Theorem B (Theorems 3.1 and 3.2). If T has NTP2, then so does T δg . If T has NATP (that is, if T doesn’t

have the antichain tree property), then so does T δg .

Differentially large fields and generic derivations are both defined in the case of finitely many commuting
derivations, and the results in Fact 1.4 hold in this more general setting. It seems quite plausible that our
Theorems A and B also hold in this setting as well, but we do not investigate this here.

2. Topological axioms and éz-fields

In giving topological axioms for differential largeness, we need the following alternative axiomatization in
terms of differential polynomials:

Fact 2.1 ([18, Theorem 2.8]). A differential field (K, δ) is differentially large if and only if

(1) K is large as a field and
(2) for all r > 0, all P ∈ K[X0, . . . , Xr], and all nonzero Q ∈ K[X0, . . . , Xr−1], if there is x ∈ K1+r

with P (x) = 0 and ∂P
∂Xr

(x) 6= 0, then there is a ∈ K with

P (a, δa, . . . , δra) = 0 6= Q(a, δa, . . . , δr−1a).

Let V be a K-variety and let V (K) denote the set of K-points of V . The étale open topology or
EK-topology on V (K) is the topology with basis given by sets of the form f(W (K)) for étale morphisms
f : W → V . Equipping the K-points of each K-variety with the EK-topology, we obtain a system of
topologies [12, Theorem A], meaning that morphisms f : V → W between K-varieties induce continuous
maps V (K) → W (K) with respect to the EK-topologies, and that these induced maps are open (resp.
closed) embeddings whenever f is an open (resp. closed) immersion. The field K is large if and only if the
topology on V (K) is non-discrete whenever V (K) is infinite [12, Theorem C]. For our purposes, we can take
this as a definition of largeness. An Lring(K)-definable set X ⊆ V (K) is éz if X is a finite union of étale
open subsets of Zariski closed subsets of V (K). If K is not large, then any Lring(K)-definable set is éz. For
large fields, the class of éz sets is quite well-behaved:

Fact 2.2 ([24, Theorems A and B(2)]). Suppose K is large (and perfect, but we always assume characteristic
zero in this note).

(1) The class of éz sets is closed under morphisms of K-varieties; in particular, all existentially Lring(K)-
definable sets are éz.

(2) For V a smooth irreducible K-variety and X ⊆ V (K) a nonempty éz set, we have dimX = dimV if
and only if X has nonempty EK-interior in V (K).

Now let δ be a derivation on K. For a variety V , we let τV denote the prolongation of V , and we
let πV denote the projection map τV → V ; see [19]. The prolongation is an analog of the tangent bundle
TV that takes the derivatives of defining parameters into account: if x ∈ V (K), then δx ∈ (τxV )(K),
and when V is defined over the constant field ker(δ), the prolongation and tangent bundle coincide. For
a = (a1, . . . , an) ∈ Kn, we let δa := (δa1, . . . , δan), and for r ∈ N, we let ∇r(a) := (a, δa, . . . , δra) ∈ K(1+r)n.

Proposition 2.3. Suppose that K is a large field and let δ be a derivation on K. The following are equivalent:

(1) For every smooth irreducible K-variety V and every éz set X ⊆ (τV )(K), if πV (X) ⊆ V (K) has
EK-interior, then there is a ∈ V (K) with (a, δa) ∈ X.

(2) For every éz set X ⊆ K2r, if π(X) ⊆ Kr has EK-interior, then there is a ∈ Kr with (a, δa) ∈ X.
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(3) For every éz set X ⊆ Kr+1, if π(X) ⊆ Kr has EK-interior, then there is y ∈ K with ∇r(y) ∈ X.
(4) (K, δ) is differentially large.

Proof. For (1)⇒(2), just take V = Ar. Suppose (2) holds and let X ⊆ K1+r be as in (3). Consider the
morphism f : A1+r → A2r given by

(x0, . . . , xr) 7→ (x0, . . . , xr−1, x1, . . . , xr).

Then f(X) ⊆ K2r is éz by Fact 2.2(1) and π(f(X)) = π(X), so (2) gives a = (a0, . . . , ar−1) ∈ Kr with
(a, δa) ∈ f(X). For y := a0, we have ∇r(y) ∈ X.

To see that (3)⇒(4), we use Fact 2.1. Let r > 0, P ∈ K[X0, . . . , Xr], and Q ∈ K[X0, . . . , Xr−1]6=0.
Suppose there is x ∈ K1+r with P (x) = 0 and ∂P

∂Xr
(x) 6= 0. Then x is a smooth K-rational point of VP , the

zero-locus of P , so we may assume that VP is smooth and irreducible. Take X := VP (K) \ VQ(K), so X is
éz and π(X) ⊆ Kr has EK-open interior by Fact 2.2(2). Then (3) gives y ∈ K with ∇r(y) ∈ X.

Finally, suppose that (K, δ) is differentially large and let V,X be as in (1). Then τV is smooth as well,
so we can use [24, Theorem B(1)] to take smooth irreducible disjoint subvarieties W1, . . . ,Wn of τV and
Lring(K)-definable EK-open subsets Xi ⊆ Wi(K) for each i with X = X1 ∪ · · · ∪ Xn. Then πV (Xi) is
EK-open in V (K) for some i, so we set W := Wi for this i and we replace X with Xi. Further shrinking X,
we may assume that X is a basic EK-open subset of W (K), so X is existentially Lring(K)-definable. As X is
EK-open in W (K), we can take an elementary Lring-extension K∗ < K containing a tuple (x, u) ∈ X∗ that is
K-generic in W using Fact 2.2(2). Then x is K-generic in V and (x, u) ∈ τV (K∗), so we may extend δ to a
derivation δ∗ : K∗ → K∗ with δ∗x = u; see [11, Chapter IV, Theorems 14 and 18]. As (K, δ) is differentially
large and K is Lring-existentially closed in K∗, the differential field (K, δ) is existentially closed in (K∗, δ∗).
As X is existentially Lring(K)-definable, we find a ∈ V (K) with (a, δa) ∈ X. �

When K is not large, the conditions in Proposition 2.3 are trivially equivalent (they never hold). Us-
ing (3)⇒(4) of Proposition 2.3 and Fact 2.2, we have:

Corollary 2.4. Suppose that K expands a large field and that δ is generic. Then the underlying differential
field (K, δ) is differentially large.

An éz-field is by definition a large field for which every definable set is an éz set. For these fields, we get
the converse:

Corollary 2.5. Suppose that L = Lring and that K is an éz-field. If (K, δ) is differentially large, then δ is
generic.

3. Transferring NTP2 and NATP

In this section, K is an algebraically bounded structure and δ is a generic derivation on K. We also
assume that (K, δ) is sufficiently saturated.

A formula ϕ(x, y) (where x, y are tuples of variables) has the tree property of the second kind (TP2)
if there is an array of tuples (ai,j)i,j<ω such that

(1) The formula ϕ(x, ai,j) ∧ ϕ(x, ai,j′) is inconsistent for all i and all j < j′.
(2) The partial type {ϕ(x, ai,f(i)) : i < ω} is consistent for all f : ω → ω.

A theory T has TP2 if some formula has TP2.

Theorem 3.1. If T δg has TP2, then so does T .

Proof. Assume that T δg has TP2, as witnessed by an Lδ-formula ϕ(x, y) and an array of tuples (ai,j)i,j<ω.
By [4, Lemma 3.2], we may also assume that |x| = 1. By Fact 1.4(2), the formula ϕ is equivalent to a formula
of the form ψ(∇rx,∇sy) for natural numbers r, s and an L-formula ψ. By replacing ai,j by ∇s(ai,j) and
augmenting y, we may assume that s = 1. For the rest of this proof, we fix r and an L-formula ψ(x0, . . . , xr, y)
(each xi unary) such that ψ(∇rx, y) has TP2. We assume that r is minimal with this property. Note that
if r = 0, then ψ is an L-formula, so T has TP2 and we are done. Thus, we assume for the remainder of
the proof that r > 0. We fix an array (ai,j)i,j<ω witnessing TP2, and we may arrange that this array is
strongly Lδ-indiscernible, meaning that each row (ai,j)j<ω is Lδ-indiscernible over the other rows and that
the sequence of rows is Lδ-indiscernible.
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For i, j < ω, let

Xi,j := {(x0, . . . , xr) ∈ Kr+1 : K |= ψ(x0, . . . , xr, ai,j)}, X∇i,j := {x ∈ K : ∇rx ∈ Xi,j}.

Then X∇i,j ∩X∇i,j′ = ∅ for all i and j 6= j′, but
⋂
iX
∇
i,f(i) is nonempty for all f : ω → ω. Let π : Kr+1 → Kr

be the projection map onto the first r coordinates.

Claim 1. The projection π(Xi,j) has dimension r for all i, j.

Proof of Claim 1. Suppose not, so we find a polynomial P (x0, . . . , xr−1, y) such that P (x0, . . . , xr−1, ai,j) is
not identically zero but vanishes on π(Xi,j). In particular, P (∇r−1x, ai,j) = 0 for all x ∈ X∇i,j . This yields

a rational function Q such that δrx = Q(∇r−1x,∇rai,j) for all x ∈ X∇i,j . Thus, ψ(∇rx, ai,j) is equivalent to
the formula

ψ(∇r−1x,Q(∇r−1x,∇rai,j), ai,j)
contradicting minimality of r. �

Claim 2. Let f : ω → ω and let n > 0. Then the set

π(X0,f(0) ∩X1,f(1) ∩ · · · ∩Xn−1,f(n−1))

has dimension r.

Proof of Claim 2. For each i, j < ω, set

bi,j := (ani+k,j+f(k))k<n, θ(x, bi,j) :=
∧
k<n ψ(∇rx, ani+k,j+f(k)).

Then the formula θ has TP2, as witnessed by (bi,j)i,j<ω. The claim follows by minimality of r and the
previous claim. �

For each i and each n > 0, we set

Fi,n := π(Xi,0 ∩Xi,1 ∩ · · · ∩Xi,n),

and we let Zi,n denote the Zariski closure of Fi,n. Then Z0,0 ⊇ Z0,1 ⊇ Z0,2 ⊇ · · · , so Notherianity of the
Zariski topology gives m with Z0,m = Z0,n for n > m. Note that Z0,m is then L(a0,0, . . . , a0,m)-definable,
and we let Zi,m denote the corresponding L(ai,0, . . . , ai,m)-definable Zariski closed set, so Zi,m = Zi,n for
n > m by indiscernibility. We note that

π(Xi,j0 ∩Xi,j1 ∩ · · · ∩Xi,jm) ⊆ Zi,m (3.1)

for all i and all m < j0 < j1 < · · · < jm. Indeed, let Z be the Zariski closure of π(Xi,j0 ∩Xi,j1 ∩ · · · ∩Xi,jn).
If Z 6⊆ Zi,m, then Z ∩Zi,m is a proper Zariski closed subset of Z, and thus of Zi,m as well by indiscernibility
of the sequence (ai,j)j<ω, but this intersection contains Zi,jm , contradicting our choice of m.

Note that π(Xi,1 ∩ Xi,2) has dimension < r for each i; if not, then the axioms of T δg would give a ∈ K
with ∇ra ∈ Xi,1 ∩ Xi,2, contradicting that X∇i,1 ∩ X∇i,2 = ∅. Thus, m > 0 and Zi,m has dimension < r for
each i. Now for each i, j, let ci,j := (ai,0, . . . , ai,m, ai,j+m+1), and set

Yi,j := {(x0, . . . , xr) ∈ Xi,j+m+1 : (x0, . . . , xr−1) 6∈ Zi,m}
Then Yi,j is defined by some L-formula θ(x0, . . . , xr, ci,j), and we claim that this formula has (m+ 1)-TP2,
meaning that

Yi,j0 ∩ · · · ∩ Yi,jm = ∅
for all i and all j0 < · · · < jm, but that the intersection

⋂
i Yi,f(i) is nonempty for all f : ω → ω. The first

part follows by (3.1). For the second part, let f : ω → ω and let n be given. Then the projection

π
(⋂

i<n Yi,f(i)
)

= π
(⋂

i<nXi,f(i)

)
\
⋃
i<n Zi,m

has dimension r by Claim 2. In particular, this intersection is nonempty, so
⋂
i<ω Yi,f(i) is nonempty as well.

By [15, Proposition 5.7], T has TP2, as witnessed by some finite conjunction of the formula θ. �

This approach works for other tree properties that can be reduced to one variable and witnessed by
strongly indiscernible parameters. For completeness, we show how to adapt our approach to the antichain
tree property, introduced in [1, Definition 4.1].

A formula ϕ(x, y) has the antichain tree property (ATP) if there exists a tree-indexed set of parameters
(aη)η∈2<ω such that
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(1) The formula ϕ(x, aη) ∧ ϕ(x, aν) is inconsistent whenever η is a strict truncation of ν.
(2) The partial type {ϕ(x, aη) : η ∈ A} is consistent for any antichain A ⊆ 2<ω.

A theory has ATP if there is a formula that has ATP. We say that T has NATP if it does not have ATP.
Any ATP theory is TP2 and SOP1; see [1, Propositions 4.4 and 4.6].

For η, ν ∈ 2<ω, we write η C ν to indicate that η is a strict truncation of ν, and we write η_ν to denote
the concatenation of η and ν. Given also A ⊆ 2<ω, we put η_A := {η_ν : ν ∈ A}.

Theorem 3.2. If T δg has ATP, then so does T .

Proof. Assume that T δg has ATP. Using [2, Fact 2.5 and Theorem 3.17] and arguing as in the proof of
Theorem 3.1, we may assume that this is witnessed by a formula ψ(∇rx, y) where x is unary, ψ(x0, . . . , xr, y) is
an L-formula, and r is minimal, along with a strongly indiscernible tree-indexed set of parameters (aη)η∈2<ω ;
see [2, Definition 2.4] for the precise definition of strong indiscernibility. As before, let

Xη := {(x0, . . . , xr) ∈ Kr+1 : K |= ψ(x0, . . . , xr, aη)}, X∇η := {x ∈ K : ∇rx ∈ Xη}

for η ∈ 2<ω, and let π : Kr+1 → Kr be the projection map onto the first r coordinates. By the proof of
Claim 1 above, π(Xη) has dimension r for all η. Obtaining an analog of Claim 2 takes a bit more work:

Claim. Let A ⊆ 2<ω be a finite nonempty antichain. Then the set π
(⋂

η∈AXη

)
has dimension r.

Proof. Fix ν ∈ A. For η = 〈i0, i1, . . . , im−1〉 ∈ 2<ω, we set

νη := ν_〈i0〉_ν_〈i1〉_ · · ·_ ν_〈im−1〉, Aη := (νη)_A.

Then A∅ = A and for B ⊆ 2<ω, the set
⋃
η∈B Aη is an antichain if and only if B is an antichain. Set

bη := (aµ)µ∈Aη , θ(x, bη) =
∧
µ∈Aη ψ(∇rx, aµ).

Then the formula θ has ATP, as witnessed by (bη)η∈2<ω . We conclude by minimality of r as above. �

For n ∈ N, we set n〈0〉 := 〈0, 0, . . . , 0〉 ∈ 2n (so 0〈0〉 = ∅). We set Fn := π
(⋂

i6nXi〈0〉
)
, we let Zn denote

the Zariski closure of Fn, and we take m with Zm = Zn for n > m. Arguing as in the proof of Theorem 3.1,
we have that m > 0, that dim(Zm) < r, and that

π(Xη0 ∩Xη1 ∩ · · · ∩Xηm) ⊆ Zm (3.2)

for all m〈0〉Cη0Cη1C · · ·Cηm (this uses that (bη)η∈C and (bν)ν∈C′ have the same Lδ-type for any two finite
chains C,C ′ ⊆ 2<ω of the same length, as a consequence of strong indiscernibility). Now for each ν ∈ 2<ω,
let cν := (a∅, . . . , am〈0〉, am〈0〉_ν) and set

Yν := {(x0, . . . , xr) ∈ Xm〈0〉_ν : (x0, . . . , xr−1) 6∈ Zm}.
Then Yν is defined by an L-formula θ(x0, . . . , xr, cν). Arguing as in the proof of Theorem 3.1, using (3.2) and
the Claim, we see that θ has m-ATP, meaning that

⋂
ν∈A Yν 6= ∅ for any antichain A, but that

⋂
ν∈C Yν = ∅

for any chain C of length m. By [2, Lemma 3.20], T has ATP. �
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